- 1、本文档共9页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
1用累加求an
1用累加法求an=an-1+f(n)型通项
例6:(1)数列{an}满足a1=1且an=an-1+3n-2(n≥2),求an。
(2)数列{an}满足a1=1且an=an-1+2n(1)(n≥2),求an。
解:(1)由an=an-1+3n-2知an-an-1=3n-2,记f(n)=3n-2= an-an-1
则an= (an-an-1)+(an-1-an-2)+(an-2-an-3)+…(a2-a1)+a1
=f(n)+ f(n-1)+ f(n-2)+…f(2)+ a1
=(3n-2)+[3(n-1)-2]+ [3(n-2)-2]+ …+(3×2-2)+1
=3[n+(n-1)+(n-2)+…+2]-2(n-1)+1
=3×2((n+2)(n-1))-2n+3=2(3n2-n)
(2)由an=an-1+2n(1)知an-an-1=2n(1),记f(n)=2n(1)= an-an-1
则an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+…(a2-a1)+a1
=f(n)+ f(n-1)+ f(n-2)+…f(2)+ a1
=2n(1)+2n-1(1)+2n-2(1)+…+22(1)+1=2(1)-2n(1)
评注:当f(n)=d(d为常数)时,数列{an}就是等差数列,教材对等差数列通项公式的推导其实就是用累加法求出来的。
2、用累积法求an= f(n)an-1型通项
例7:(1)已知数列{an}满足a1=1且an=n(2(n-1))an—1(n≥2),求an
(2)数列{an}满足a1=2(1)且an=2n(1)an—1,求an
解:(1)由条件 an—1(an)=n(2(n-1)),记f(n)=n(2(n-1))
an= an—1(an)· an—2(an-1)·… a1(a2)·a1=f(n)f(n-1)f(n-2)…f(2)f(2)a1
=n(2(n-1))·n-1(2(n-2))·n-2(2(n-3))·…3(2×2)·2(2×1)·1=n(2n-1)
(2)an= an—1(an)· an—2(an-1)·… a1(a2)·a1=2n(1)·2n-1(1)…22(1)·2(1)=21+2+…+n(1)=2- 2(n(n+1))
评注:如果f(n)=q(q为常数),则{an}为等比数列,an= f(n)an—1型数列是等比数列的一种推广,教材中对等比数列通项公式地推导其实正是用累积法推导出来的。
3、用待定系数法求an=Aan-1+B型数列通项
例8:数列{an}满足a1=1且an+1+2an=1,求其通项公式。
解:由已知,an+1+2an=1,即an=-2 an—1+1
令an+x=-2(an-1+x),则an=-2 an-1-3x,于是-3x=1,故x=-3(1)
∴ an-3(1)=-2(an-1-3(1))
故{ an-3(1) }是公比q为-2,首项为an-3(1)=3(2)的等比数列
∴an-3(1)=3(2)(-2)n-1=3(1-(-2)n)
评注:一般地,当A≠1时令an+x=A(an-1+x)有an=A an-1+(A-1)x,则有
(A-1)x=B知x=A-1(B),从而an+A-1(B)=A(an-1+A-1(B)),于是数列{an+A-1(B)}是首项为a1+A-1(B)、公比为A的等比数列,故an+A-1(B)=(a1+A-1(B))An-1,从而
an=(a1+A-1(B))An-1-A-1(B);特别地,当A=0时{an}为等差数列;当A≠0,B=0时,数列{an}为等比数列.
4、通过Sn求an
例10:数列{an}满足an =5Sn-3,求an。
解:令n=1,有a1=5an-3,∴a1=4(3)。由于an =5Sn-3………①
则 an-1 =5 Sn-1-3………②
①-②得到an-an-1=5(Sn-Sn-1) ∴an-an-1 =5an
故an=-4(1)an-1,则{an}是公比为q=-4(1)、首项an=4(3)的等比数列,则an=4(3)(-4(1))n-1
5,取倒数转化为等差数列
例11:已知数列{an}满足a1=1且a
n+1=
an+2(2an),求an。
解:由a
n+1=
an+2(2an)有 an+1(1)= 2an(an+2)= 2(1)+an(1) 即an+1(1)-an(1)=2(1)
所以,数列{an(1)}是首项为a1(1)=1、公差为d=2(1)的等差数列
文档评论(0)