- 1、本文档共4页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
11.21三角形的内角(教案)
八年级数学教学设计
课题
11.2.1三角形的内角
课型
新授
三维
目标
知识
目标
掌握三角形的内角和定理。
能力
目标
1、经历实验活动的过程,得出三角形的内角和定理,能用平行线的性质推出这一定理
2、能应用三角形内角和定理解决一些简单的实际问题
情感
目标
通过对问题的解决,使学生有成就感,培养学生的合作精神,树立学好数学的信心.
教学重点
三角形内角和定理
教学难点
三角形内角和定理的推理的过程
教学方法
引导讲授法
教学过程
一、创设情景,提出问题
【问题1】在△ABC中,∠A+∠B+∠C等于多少度?
三角形的内角和为180o。
【问题2】如何得到这一结论呢?
用量角器测量。
由于测量存在误差,我们需要用更准确、更严谨的方法来验证。今天
我们就来探讨一下如何验证这一结论。
二、活动探究,探索新知
【问题1】如何用剪拼的方法验证三角形内角和为180o?
学生活动:在所准备的三角形硬纸片上标出三个内角的编码,动手把三角形的
两个角剪下进行拼接,得到180o。
教师提示:如何得到180o:平角的度数为180o;两直线平行,同旁内角的和为180o
动画演示:下图是由这两个得到180o的思路进行的拼接方法:
图1 图2 图3
【问题2】如图1,直线MN有什么特点?它存在吗?
直线MN∥BC,它不存在,是我们自己添加上去的。
在证明的过程中,我们需要说明如何添加这一辅助线。
AB
A
B
C
D
E
2
1
已知,求证:
证明:过点A作EF∥BC
∵ DE∥BC
∴∠1= ∠B ,∠2=∠C(两直线平行,内错角相等)
∵ ∠1+ ∠BAC+ ∠2=180°(平角定义)
∴∠B+ ∠BAC+ ∠C=180°
强调:辅助线的添加
证明思路为将三角形的三个角为180o转化为一个平角或同旁内角互补,利用平行线的性质进行证明。
【问题4】结合图2、图3,你能得到怎样的证明方法?还有其他的证明方法吗?
简单说明同旁内角互补这一思路的证明过程。
三、应用新知,解决问题
例题:如图,C岛在A岛的北偏东方向,B岛在A岛的北偏东方向,C岛在B岛的北偏西 方向,从C岛看A、B两岛的视角是多少度?
讲解:方位角的寻找。
AD∥BE
练习巩固:
课本P13第1、2题。
四、课堂小结,布置作业
小结:三角形的内角和为180o
证明方法:将三角形的三个角为180o转化为一个平角或同旁内角互补。
作业:习题11.2第1、2、3、4题。
教后反思
文档评论(0)