- 1、本文档共10页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
10.1高一数学求函数的定义域与值域的常用方法
时间段
授课内容
一
函数定义域
二
函数值域
三
函数解析式
四
例题讲解与小结、练习
1、函数的有关概念
(1)函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数
记作: y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域
注意:
① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
(2)构成函数的三要素是什么?
定义域、对应关系和值域
(3)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?
通过三个已知的函数:y=ax+b (a≠0)
y=ax2+bx+c (a≠0)
y= (k≠0)
(三)
1、如何求函数的定义域
例1:已知函数f (x) = +
(1)求函数的定义域;
(2)求f(-3),f ()的值;
(3)当a>0时,求f(a),f(a-1)的值.
分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.
解:
例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.
分析:
小结几类函数的定义域:
(1)如果f(x)是整式,那么函数的定义域是实数集R .
(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合 .
(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.
(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)
(5)满足实际问题有意义.
2、如何判断两个函数是否为同一函数
例3、下列函数中哪个与函数y=x相等?
(1)y = ()2 ; (2)y = () ;
(3)y = ; (4)y=
分析:
eq \o\ac(○,1) 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
eq \o\ac(○,2) 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
(2)判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?
① f ( x ) = (x -1) 0;g ( x ) = 1
② f ( x ) = x; g ( x ) =
③ f ( x ) = x 2;f ( x ) = (x + 1) 2
④ f ( x ) = | x | ;g ( x ) =
(3)求下列函数的定义域
①
②
③ f(x) = +
④ f(x) =
⑤
一. 求函数的定义域与值域的常用方法
求函数的解析式,求函数的定义域,求函数的值域,求函数的最值
二. 求函数的解析式
求函数解析式的一般方法有:
(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。
(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;
(3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g(x),以换元法解之;
(4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;
(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。
(二)求函数定义域
1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;
常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;
如前所述,实际问
您可能关注的文档
- 06 方分析.ppt
- 06 第章 理想流体的平面无旋运动.ppt
- 06 流流动摩擦损失.ppt
- 06寡头场和博弈.ppt
- 06.降塞6区含水上升率.ppt
- 07 【料作文】阅读率下降.ppt
- 06秋几期末答案.doc
- 04_第章 截切体与相贯体的投影.ppt
- 06_隐数微分法.ppt
- 08-0-2高数B期末试卷B卷及答案.doc
- 《低渗透油藏内源微生物激活驱油技术规范》征求意见稿.docx
- 《水工程施工导流方案编制规范(征求意见稿)》编制说明.pdf
- 《油莎豆机械收获作业质量》(征求意见稿).pdf
- 环境空气二氧化碳在线监测仪计量技术规范(征求意见稿).docx
- 高速公路服务区设计规范(征求意见稿)编制说明.docx
- 《马铃薯脱毒原原种离地苗床生产技术规程》-编制说明(征求意见稿).docx
- 《农产品质量安全检测机构考核 现场评审工作规程(报批稿)》.docx
- 菲律宾蛤仔苗种北方本地化培育技术规范(征求意见稿).docx
- 《建设工程全过程工程咨询服务标准》(征求意见稿).pdf
- 《基于GS1标准的食品可追溯控制点及一致性准则(报批稿)》编制说明.docx
文档评论(0)