差分方程数学建模举例.docVIP

  1. 1、本文档共13页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
差分方程建模举例 差分方程建模方法的思想与与一般数学建模的思想是一致的,也需要经历 背景分析、确定目标、预想结果、引入必要的数值表示(变量、常量、函数、积分、导数、差分、取最等)概念和记号、几何形式(事物形状、过程轨迹、坐标系统等),也就是说要把事物的性态、结构、过程、成分等用数学概念、原理、方法来表现、分析、求解。 当然,由于差分方程的特殊性,首先应当把系统或过程进行特别分解,形成表现整个系统的各个部分的离散取值形式,或形成变化运动过程的时间或距离的分化而得到离散变量。然后通过内在的机理分析,找出变量所能满足的平衡关系、增量或减量关系及规律,从而得到差分方程。另外,有时有可能 通过多个离散变量的关系得到我们关心的变量的关系,这实际上建立的是离散向量方程,它有着非常重要的意义。有时还需要找出决定变量的初始条件。有时还需要将问题适当分成几个子部分,分别求解。 模型1 种群生态学中的虫口模型: 在种群生态学中,考虑像蚕、蝉这种类型的昆虫数目的变化 ,他的变化规律是:每年夏季这种昆虫成虫产卵后全部死亡,第二年春天每个虫卵孵化成一个虫子。 建立数学模型来表现虫子数目的变化规律。 模型建立:假设第n年的虫口数目为,每年一个成虫平均产卵c个(这个假设有点粗糙,应当考虑更具体的产卵分布状况),则有:,这是一种简单模型; 如果进一步分析,由于成虫之间会有争斗以及传染病、天敌等的威胁,第n+1年的成虫数会减少,如果考虑减少的主要原因是虫子之间的两两争斗,由于虫子配对数为,故减少数应当与它成正比,从而有: 这个模型可化成:,这是一阶非线性差分方程。这个模型的解的稳定性可以用相应一阶差分方程的判断方法来获得。 如果还考虑其它的影响成虫孵卵及成活的因素的定量关系,这个模型在此基础上仍可进一步改进,更加符合实际情形。这种关系一方面可以通过机理分析,确定减少量与影响因素的定量关系,另一方面也可以用统计的方法来线性估计影响程度。或者还可以用影响曲线的方法来直观表现影响的比例关系、周期关系、增量关系等等。 模型2 蛛网模型 经济背景与问题:在自由市场经济中,有些商品的生产、销售呈现明显的周期性。农业产品往往如此,在工业生产中,许多商品的生产销售是有周期性的,表现在:商品的投资、销售价格、产量、销售量在一定时期内是稳定的,因而整个某个较长的时期内这些经济数据表现为离散变量的形式。在这些因素中,我们更关心的是商品的销售价格与生产产量这两个指标,它们是整个经营过程中的核心因素,要想搞好经营,取得良好的经济效益,就必须把握好这两个因素的规律,作好计划。试分析市场经济中经营者根据市场经济的规律,如何建立数学模型来表现和分析市场趋势的。 模型假设与模型建立 将市场演变模式划分为若干段,用自然数n来表示;设第n个时段商品的数量为,价格为,n=1,2…。由于价格与产量紧密相关,因此可以用一个确定的关系来表现:即设有 这就是需求函数,f 是单调减少的对应关系; 又假设下一期的产量是决策者根据这期的价格决定的,即:设,h是单调增加的对应关系,从而,有关系: (3.4) g 也是单调增加的对应关系. 因此可以建立差分方程: (3.5) (3.6) 这就是两个差分方程。属一阶非线性差分方程。 模型的几何表现与分析。 为了表现出两个变量和的变化过程,我们可以借助已有的函数f和g ,通过对应关系的几何表现把点列,和在坐标系中描绘出来,进而分析它们的变化规律、趋势、找稳定点等等。其中 将点列连接起来,就会形成象蛛网一样的折线,这个图形被称作为蛛网模型。可以设想,这种形式作为差分方程分析与求解的重要手段,它的主要数学技术是:图形的描绘,曲线上点列的描绘(设法由前一个点的一个坐标分量来算出下一个点的一个坐标分量,并确认它在哪条曲线上,就可以画出这个点;有时或者可由前两个点决定下一个点的一个坐标分量),也就是通过直观、几何形式,把我们关心的变量的所有可能取值表示出来。这里采用的方法是,引入两条曲线,因为在曲线上如果知道了一个分量,就可以作出另一个分量。可见几何形式表示有关系的变量是既方便又有意义的。易见:如果点列最后收敛于点,则,并且就是两条曲线的交点,从而稳定的。这也表明,市场在长期运行之后会保持一种稳定的状态,说明市场处于饱和状态。要想进一步发展就必须打破这种平衡,在决策机制和方法上有所改进。 几何上的进一步分析表明,如果曲线和在交点处切线的斜率的绝对值记为:,则 当时,是稳定的;

文档评论(0)

jwjp043 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档