自动控制理论现代控制理论课件.ppt

  1. 1、本文档共162页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
自动控制理论现代控制理论课件

西北工业大学自动化学院 引 论 经典控制理论: 数学模型:线性定常高阶微分方程和传递函数; 分析方法: 时域法(低阶1~3阶) 根轨迹法 频域法 适应领域:单输入-单输出(SISO)线性定常系统 缺 点:只能反映输入-输出间的外部特性,难以揭示系统内部的结构和运行状态。 现代控制理论: 数学模型:以一阶微分方程组成差分方程组表示的动态方程 分析方法:精准的时域分析法 适应领域:(1)多输入-多输出系统(MIMO、SISO、MISO、SIMO) (2)非线性系统 (3)时变系统 优越性:(1)能描述系统内部的运行状态 (2)便于考虑初始条件(与传递函数比较) (3)适用于多变量、非线性、时变等复杂大型控制系统 (4)便于计算机分析与计算 (5)便于性能的最优化设计与控制 内容:线性系统理论、最优控制、最优估计、系统辨识、自适应控制 1.1 系统数学描述的两种基本方法 1.2 状态空间描述常用的基本概念 1.3 系统的传递函数矩阵 1.4 线性定常系统动态方程的建立 典 型 控 制 系 统 方 框 图 典型控制系统由被控对象、传感器、执行器和控制器组成。 被控过程具有若干输入端和输出端。 数学描述方法: 输入-输出描述(外部描述):高阶微分方程、传递函数矩阵。 状态空间描述(内部描述):基于系统内部结构,是对系统的一种完整的描述。 输入:外部对系统的作用(激励); 控制:人为施加的激励; 输入分控制与干扰。 输出:系统的被控量或从外部测量到的系统信息 。若输出是由传感器测量得到的,又称为观测。 状态、状态变量和状态向量 :能完整描述和唯一确定系统时域行为或运行过程的一组独立(数目最小)的变量称为系统的状态;其中的各个变量称为状态变量。当状态表示成以各状态变量为分量组成的向量时,称为状态向量。 状态空间:以状态向量的各个分量作为坐标轴所组成的n维空间称为状态空间。 状态轨线:系统在某个时刻的状态,在状态空间可以看作是一个点。随着时间的推移,系统状态不断变化,并在状态空间中描述出一条轨迹,这种轨迹称为状态轨线或状态轨迹。 状态方程:描述系统状态变量与输入变量之间关系的一阶向量微分或差分方程称为系统的状态方程,它不含输入的微积分项。一般情况下,状态方程既是非线性的,又是时变的,可以表示为 输出方程:描述系统输出变量与系统状态变量和输入变量之间函数关系的代数方程称为输出方程,当输出由传感器得到时,又称为观测方程。输出方程的一般形式为 动态方程:状态方程与输出方程的组合称为动态方程,又称为状态空间表达式 。一般形式为 或离散形式 分别写出状态矩阵 A、控制矩阵 B、输出矩阵 C、前馈矩阵 D : 讨论: 1、状态变量的独立性。 2、由于状态变量的选取不是唯一的,因此状态方程、输出方程、动态方程也都不是唯一的。但是,用独立变量所描述的系统的维数应该是唯一的,与状态变量的选取方法无关。 3、动态方程对于系统的描述是充分的和完整的,即系统中的任何一个变量均可用状态方程和输出方程来描述。 例1-1 试确定图8-5中(a)、(b)所示电路的独立状态变量。图中u、i分别是是输入电压和输入电流,y为输出电压,xi为电容器电压或电感器电流。 因此,只有一个变量是独立的,状态变量只能选其中一个,即用其中的任意一个变量作为状态变量便可以确定该电路的行为。实际上,三个串并联的电容可以等效为一个电容。 对图(b) x1 = x2,因此两者相关,电路只有两个变量是独立的,即(x1和x3)或(x2和x3),可以任用其中一组变量如(x2,x3)作为状态变量。 令初始条件为零,对线性定常系统的动态方程进行拉氏变换,可以得到 1.4 .1 由物理模型建动态方程 根据系统物理模型建立动态方程 其向量-矩阵形式为 其向量-矩阵形式为 于是由系统微分方程可以导出系统状态方程 式中 其展开式为 由展开式将 均以 及 u 的各阶导数表示,经整理可得 若输入量中仅含m次导数且 ,可将高于m次导数项的系数置0,仍可应用上述公式。 则状态方程为 当 时, 不变, 例1-6 设二阶系

文档评论(0)

zhuliyan1314 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档