深度探讨透视投影坐标系2016.docVIP

  1. 1、本文档共9页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
3d图形程序,就一定会做坐标变换。而谈到坐标变换,就不得不提起投影变换,因为它是所有变换中最不容易弄懂的。但有趣的是,各种关于透视变换的文档却依然是简之又简,甚至还有前后矛盾的地方。看来如此这般光景,想要弄清楚它,非得自己动手不可了。所以在下面的文章里,作者尝试推导一遍这个难缠的透视变换,然后把它套用到 DX和 PS2lib 的实例中去。 一般概念 所谓透视投影变换,就是view 空间到project 空间的带透视性质的坐标变换步骤(这两 个空间的定义可以参考其他文档和书籍)。我们首先来考虑它应该具有那些变换性质。很显然,它至少要保证我们在view空间中所有处于可视范围内的点通过变换之后,统统落在project空间的可视区域内。好极了,我们就从这里着手——先来看看两个空间的可视区域。 由于是透视变换,view空间中的可见范围既是常说的视平截体(view frustum)。如图, (图1) 它就是由前后两个截面截成的这个棱台。 从view空间的x正半轴看过去是下图这个样子。 (图2) 接下来是project空间的可视范围。这个空间应当是处于你所见到的屏幕上。实际上将屏幕表面视作project空间的xoy平面,再加一条垂直屏幕向里(或向外)的z轴(这取决于你的坐标系是左手系还是右手系),这样就构成了我们想要的坐标系。好了,现在我们可以用视口(view port)的大小来描述这个可视范围了。比如说全屏幕640*480的分辨率,原点在屏幕中心,那我们得到的可视区域为一个长方体,它如下图(a)所示。 (图3) 但是,这样会带来一些设备相关性而分散我们的注意力,所以不妨先向DirectX文档学学,将project空间的可视范围定义为x∈[-1,1], y∈[-1,1], z∈[0,1]的一个立方体(上图b)。这实际上可看作一个中间坐标系,从这个坐标系到上面我们由视口得出的坐标系,只需要对三个轴向做一些放缩和平移操作即可。另外,这个project坐标系对clip操作来说,也是比较方便的。 推导过程 先从project空间的x正半轴看看我们的变换目标。 (图4) 这个区域的上下边界为y’=±1, 而图2中的上下边界为y = ± z * tan(fov/2),要实现图 2到图4的变换,我们有y’ = y * cot(fov/2) / z。这下完了,这是一个非线性变换,怎么用矩阵计算来完成呢?还好我们有w这个分量。注意到我们在做投影变换之前所进行的两次坐标变换——world变换和view变换,他们只是一系列旋转平移和缩放变换的叠加。仔细观察这些变换矩阵,你会发现它们其实不会影响向量的w分量。换句话说,只要不是故意,一个w分量等于1的向量,再来到投影变换之前他的w分量仍旧等于1。好的,接下来我们让w’= w*z, 新的w就记录下了view空间中的z值。同时在y分量上我们退而求其次,只要做到y’ = y * cot(fov/2)。那么,在做完线性变换之后,我们再用向量的y除以w,就得到了我们想要的最终的y值。 x分量的变换可以如法炮制,只是fov要换一换。事实上,很多用以生成投影变换矩阵的函数都使用了aspect这个参数。这个参数给出了视平截体截面的纵横比(这个比值应与view port的纵横比相等,否则变换结果会失真)。如果我们按照惯例,定义aspect = size of X / size of Y。那么我们就可以继续使用同一个fov而给出x分量的变换规则:x’ = x * cot(fov/2) / aspect。 现在只剩下z分量了。我们所渴望的变换应将z = Znear 变换到z = 0,将z = Zfar变换到z = 1。这个很简单,但是等等,x, y最后还要除以w,你z怎能例外。既然也要除,那么z = Zfar 就不能映射到z = 1了。唔,先映射到z = Zfar试试。于是,有z’ = Zfar*(z-Znear)/(Zfar – Znear)。接下来,看看z’/z的性质。令f(z) = z’/z = Zfar*(z-Znear)/(z*(Zfar – Znear))。 则f’(z) = Zfar * Znear / ( z^2 * (Zfar –Znear )), 显而易见f’(z) 0。所以除了z = 0是一个奇点,函数f(z)是一个单调增的函数。因此,当Znear≤z≤Zfar时,f(Znear)≤f(z)≤f(Zfar), 即0≤f(z)≤1。 至此,我们可以给出投影变换的表达式了。 x’ = x*cot(fov/2)/aspect y’ = y*cot(fov/2) z’ = z*Zfar / ( Zfar – Znear ) – Zfar*Znear / ( Zfar – Znear ) w’ = z 以矩阵表示,则得

文档评论(0)

mtyi297 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档