- 1、本文档共118页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
新课标高考十年(2007——2016)数学理科试题及答案汇总精选
十年(2007——2016)新课标高考数学理科试题及答案汇总
2007年普通高等学校招生全国统一考试(海南、宁夏)
理科数学
本试卷分第 = 1 \* ROMAN I卷(选择题)和第 = 2 \* ROMAN II卷(非选择题)两部分.第 = 2 \* ROMAN II卷第22题为选考题,其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.
注意事项:
1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上.
2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.
4.保持卡面清洁,不折叠,不破损.
5.作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑.
参考公式:
样本数据,,,的标准差 锥体体积公式
其中为样本平均数 其中为底面面积、为高
柱体体积公式 球的表面积、体积公式
,
其中为底面面积,为高 其中为球的半径
第 = 1 \* ROMAN I卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知命题,,则( )
A., B.,
C., D.,
2.已知平面向量,则向量( )
A. B.
C. D.
3.函数在区间的简图是( )
A.
B.
C.
D.
开始
?
是
否
输出
结束
4.已知是等差数列,,其前10项和,
则其公差( )
A. B. C. D.
5.如果执行右面的程序框图,那么输出的( )
A.2450 B.2500
C.2550 D.2652
6.已知抛物线的焦点为,
点,在抛物线上,
且, 则有( )
A. B.
C. D.
7.已知,,成等差数列,成等比数列,则的最小值是( )
A. B. C. D.
20
20
正视图
20
侧视图
10
10
20
俯视图
8.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )
A.
B.
C.
D.
9.若,则的值为( )
A. B.
C. D.
10.曲线在点处的切线与坐标轴所围三角形的面积为( )
A. B. C. D.
11.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表
甲的成绩环数78910频数5555乙的成绩环数78910频数6446丙的成绩环数78910频数4664分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )
A. B.
C. D.
12.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为,,,则( )
A. B. C. D.
第 = 2 \* ROMAN II卷
本卷包括必考题和选考题两部分,第13题-第21题为必考题,每个试题考生都必须做答,第22题为选考题,考生根据要求做答.
二、填空题:本大题共4小题,每小题5分.
13.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 .
14.设函数为奇函数,则 .
15.是虚数单位, .(用的形式表示,)
16.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有 种.(用数字作答)
三、解答题:解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)
如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与.现测得,并在点测得塔顶的仰角为,求塔高.
18.(本小题满分12分)
如图,在三棱锥中,侧面与侧面均为等边三角形,,为中点.
(Ⅰ)证明:平面;
(Ⅱ)求二面角的余弦值.
19.(本小题满分12分)
在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点和.
( = 1 \* ROMAN I)求的取值范围;
( = 2 \* ROMAN II)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理
文档评论(0)