- 1、本文档共50页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第章 线性相关与回归ppt课件
二、线性相关系数 在分析两个变量X与Y之间关系时,常常要了解X与Y之 间 有无相关关系,相关是否密切,是呈正相关还是负相 关。相关系数就是说明具有直线关系的两个变量间相关 密切程度和相关方向的统计量。 皮尔森(Pearson)相关系数的计算公式为: 相关系数的计算方法 计算时分别可用下面公式带入相关系数r的计算公式中 三、相关系数的显著性检验 常用的检验方法有两种: 1.按自由度直接查附表11的界值表,得到P 值。 四、进行线性相关分析的注意事项 ⒈ 线性相关表示两个变量之间的相互关系是双向的,分析两个变量之间到底有无相关关系可首先绘制散点图,散点图呈现出直线趋势时,再作分析。 四、进行线性相关分析的注意事项 ⒊ 依据公式计算出的相关系数仅是样本相关系数,它是总体相关系数的一个估计值,与总体相关系数之间存在着抽样误差,要判断两个事物之间有无相关及相关的密切程度,必须作假设检验。 四、进行线性相关分析的注意事项 ⒋ 相关分析是用相关系数来描述两个变量间相互关系的密切程度和方向,而两个事物之间的关系既可能是依存因果关系,也可能仅是相互伴随的数量关系。决不可因为两事物间的相关系数有统计学意义,就认为两者之间存在着因果关系,要证明两事物间确实存在因果关系,必须凭借专业知识加以阐明。 一、线性回归的基本概念 相关是分析两个正态变量X与Y之间的互相关系。在相关分析中,分不清X与Y何者为自变量,何者为因变量。现在假设两个变量X 、Y 中,当一个变量X 改变时,另一个变量 Y 也相应地改变,当这样的两个变量之间存在着直线关系时,不仅可以用相关系数 r 表示变量Y与X线性关系的密切程度,也可以用一个直线方程来表示 Y 与 X 的线性关系。 二、线性回归方程的计算 三、线性回归方程的显著性检验 对线性回归方程要进行假设检验,就是要检验b是否为β=0的总体中的一个随机样本。该假设检验通常用方差分析或者t检验,两者的检验效果等价。 线性回归方程的显著性检验-方差分析 检验的基本思想: 如果 X 与 Y 之间无线性回归关系, 则 SS回归 与 SS剩余 都是其它随机因素对Y的影响,由此描写变异的 MS回归 与 MS剩余 应近似相等,总体回归系数β=0,反之,β≠0。于是,可用 F 检验对 X 与 Y 之间有无回归关系进行检验。 四、进行线性回归分析的注意事项 ⒈ 只有将两个内在有联系的变量放在一起进行回归分析才是有意义的。 ⒉ 作回归分析时,如果两个有内在联系的变量之间存在的是一种依存因果的关系,那么应该以“因”的变量为X ,以“果”的变量为Y 。如果变量之间并无因果关系,则应以易于测定、较为稳定或变异较小者为X 。 ⒊ 在回归分析中,因变量是随机变量,自变量既可以是随机变量(II型回归模型,两个变量应该都服从正态分布),也可以是给定的量(I型回归模型,这时,与每个X 取值相对应的变量Y必须服从正态分布),如果数据不符合要求,在进行回归分析前,必须先进行变量的变换。 四、进行线性回归分析的注意事项 ⒋ 回归方程建立后必须作假设检验,只有经假设检验拒绝了无效假设,回归方程才有意义。 ⒌ 使用回归方程计算估计值时,不可把估计的范围扩大到建立方程时的自变量的取值范围之外。 一、线性相关与回归的区别 ⒈ 相关系数的计算只适用于两个变量都服从正态分布的情形,而在回归分析中,因变量是随机变量,自变量既可以是随机变量(II型回归模型,两个变量都应该服从正态分布),也可以是给定的量(I型回归模型,这时,与每个X 取值相对应的变量Y必须服从正态分布)。 ⒉ 线性相关表示两个变量之间的相互关系是双向的,回归则反映两个变量之间的依存关系,是单向的。 二、线性相关与回归的联系 ⒊ 如果对同一资料进行相关与回归分析,则得到的相关系数r与回归方程中的b正负号是相同的。 ⒋ 在相关分析中,求出r后要进行假设检验,同样,在回归分析中,对b也要进行假设检验。实际上,通过数学推导,对同一样本可以得出r与b互化的公式,同一样本的这两种假设检验也是等价的。因此,由于r的假设检验可以直接查表,较为简单,所以可以用其代替对b的假设检验。 第四节 等级相关 如果观测值是等级资料,则可以用等级相关来 表达两事物之间的关系。 等级相关是分析X、Y 两变量等级间是否相关的一种非参数方法。 常用的等级相关方法是Spearman等级相关。 与线性相关系数r 一样,等级相关系数 rs的数值亦在 -1与 +1之间,数值为正表示正相关,数值为负表示负相关。 一、等级相关系数的计算 二、等级相关系数的显著性检验 rs 是
文档评论(0)