- 1、本文档共44页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第6讲 非线性规划ppt课件
设 X11=X1, X21= X 2,, X31= X 3, X41= X 4, X51= X 5,, X61= X 6 X12= X 7, X22= X 8,, X32= X 9, X42= X 10, X52= X 11,, X62= X 12 x1=X13, y1=X14, x2=X15, y2=X16 (1)先编写M文件liaoch.m定义目标函数。 MATLAB(liaoch) (2) 取初值为线性规划的计算结果及临时料场的坐标: x0=[3 5 0 7 0 1 0 0 4 0 6 10 5 1 2 7]; 编写主程序gying2.m. MATLAB(gying2) (3) 计算结果为: x=[ 3.0000 5.0000 0.0707 7.0000 0 0.9293 0 0 3.9293 0 6.0000 10.0707 6.3875 4.3943 5.7511 7.1867]’ fval = 105.4626 exitflag = 1 (4) 若修改主程序gying2.m, 取初值为上面的计算结果: x0=[ 3.0000 5.0000 0.0707 7.0000 0 0.9293 0 0 3.9293 0 6.0000 10.0707 6.3875 4.3943 5.7511 7.1867]’ 得结果为: x=[3.0000 5.0000 0.3094 7.0000 0.0108 0.6798 0 0 3.6906 0 5.9892 10.3202 5.5369 4.9194 5.8291 7.2852]’ fval =103.4760 exitflag = 1 总的吨千米数比上面结果略优. (5) 若再取刚得出的结果为初值, 却计算不出最优解. MATLAB(gying2) MATLAB(gying2) * 数学建模与数学实验 后勤工程学院数学教研室 非线性规划 实验目的 实验内容 2、掌握用数学软件求解优化问题。 1、直观了解非线性规划的基本内容。 1、非线性规划的基本理论。 4、实验作业。 2、用数学软件求解非线性规划。 3、钢管订购及运输优化模型 *非线性规划的基本解法 非线性规划的基本概念 非线性规划 返回 定义 如果目标函数或约束条件中至少有一个是非线性函数时的最优化问题就叫做非线性规划问题. 非现性规划的基本概念 一般形式: (1) 其中 , 是定义在 En 上的实值函数,简记: 其它情况: 求目标函数的最大值或约束条件为小于等于零的情况,都可通过取其相反数化为上述一般形式. 定义1 把满足问题(1)中条件的解 称为可行解(或可行点),所有可行点的集合称为可行集(或可行域).记为D.即 问题(1)可简记为 . 定义2 对于问题(1),设 ,若存在 ,使得对一切 ,且 ,都有 ,则称X*是f(X)在D上的局部极小值点(局部最优解).特别地当 时,若 ,则称X*是f(X)在D上的严格局部极小值点(严格局部最优解). 定义3 对于问题(1),设 ,对任意的 ,都有 则称X*是f(X)在D上的全局极小值点(全局最优解).特别地当 时,若 ,则称X*是f(X)在D上的严格全局极小值点(严格全局最优解). 返回 非线性规划的基本解法 SUTM外点法 SUTM内点法(障碍罚函数法) 1、罚函数法 2、近似规划法 返回 罚函数法 罚函数法基本思想是通过构造罚函数把约束问题转化为一系列无约束最优化问题,进而用无约束最优化方法去求解.这类方法称为序列无约束最小化方法.简称为SUMT法. 其一为SUMT外点法,其二为SUMT内点法. 其中T(X,M)称为罚函数,M称为罚因子,带M的项称为罚项,这里的罚函数只对不满足约束条件的点实行惩罚:当 时,满足各
文档评论(0)