2012高考冲刺样本07平面向量.docVIP

  1. 1、本文档共24页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
2012高考冲刺样本07平面向量

第六部分——平面向量 知识点总结精华 1.本章知识网络结构  2.向量的概念 (1)向量的基本要素:大小和方向.(2)向量的表示:几何表示法 ;字母表示:a; 坐标表示法 a=xi+yj=(x,y). (3)向量的长度:即向量的大小,记作|a|. (4)特殊的向量:零向量a=O|a|=O. 单位向量aO为单位向量|aO|=1. (5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2) (6) 相反向量:a=-bb=-aa+b=0 (7)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a∥b.平行向量也称为共线向量. 3.向量的运算 运算类型 几何方法 坐标方法 运算性质 向量的 加法 1.平行四边形法则 2.三角形法则 向量的 减法 三角形法则 , 数 乘 向 量 1.是一个向量,满足: 2.0时, 同向; 0时, 异向; =0时, . 向 量 的 数 量 积 是一个数 1.时, . 2. 4.重要定理、公式 (1)平面向量基本定理 e1,e2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1, λ2,使a=λ1e1+λ2e2. (2)两个向量平行的充要条件 a∥ba=λb(b≠0)x1y2-x2y1=O. (3)两个向量垂直的充要条件 a⊥ba·b=Ox1x2+y1y2=O. (4)线段的定比分点公式 设点P分有向线段所成的比为λ,即=λ,则 =+ (线段的定比分点的向量公式) (线段定比分点的坐标公式) 当λ=1时,得中点公式: =(+)或 (5)平移公式 设点P(x,y)按向量a=(h,k)平移后得到点P′(x′,y′), 则=+a或 曲线y=f(x)按向量a=(h,k)平移后所得的曲线的函数解析式为: y-k=f(x-h) (6)正、余弦定理 正弦定理: 余弦定理:a2=b2+c2-2bccosA, b2=c2+a2-2cacosB, c2=a2+b2-2abcosC. (7)三角形面积计算公式: 设△ABC的三边为a,b,c,其高分别为ha,hb,hc,半周长为P,外接圆、内切圆的半径为R,r. ①S△=1/2aha=1/2bhb=1/2chc ②S△=Pr ③S△=abc/4R ④S△=1/2sinC·ab=1/2ac·sinB=1/2cb·sinA ⑤S△= [海伦公式] ⑥S△=1/2(b+c-a)ra[如下图]=1/2(b+a-c)rc=1/2(a+c-b)rb [注]:到三角形三边的距离相等的点有4个,一个是内心,其余3个是旁心. 如图: 图1中的I为S△ABC的内心, S△=Pr 图2中的I为S△ABC的一个旁心,S△=1/2(b+c-a)ra 附:三角形的五个“心”; 重心:三角形三条中线交点. 外心:三角形三边垂直平分线相交于一点. 内心:三角形三内角的平分线相交于一点. 垂心:三角形三边上的高相交于一点. 旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点. ⑸已知⊙O是△ABC的内切圆,若BC=a,AC=b,AB=c [注:s为△ABC的半周长,即] 则:①AE==1/2(b+c-a) ②BN==1/2(a+c-b) ③FC==1/2(a+b-c) 综合上述:由已知得,一个角的邻边的切线长,等于半周长减去对边(如图4). 特例:已知在Rt△ABC,c为斜边,则内切圆半径r=(如图3). ⑹在△ABC中,有下列等式成立. 证明:因为所以,所以,结论! ⑺在△ABC中,D是BC上任意一点,则. 证明:在△ABCD中,由余弦定理,有① 在△ABC中,由余弦定理有②,②代入①,化简 可得,(斯德瓦定理) ①若AD是BC上的中线,; ②若AD是∠A的平分线,,其中为半周长; ③若AD是BC上的高,,其中为半周长. ⑻△ABC的判定: △ABC为直角△∠A + ∠B = <△ABC为钝角△∠A +

文档评论(0)

185****7617 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档