近世代数期末考试试卷和答案.doc

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
近世代数期末考试试卷和答案

近世代数模拟试题三 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、6阶有限群的任何子群一定不是( )。 A、2阶  B、3 阶 C、4 阶  D、 6 阶 2、设G是群,G有( )个元素,则不能肯定G是交换群。 A、4个 B、5个 C、6个 D、7个 3、有限布尔代数的元素的个数一定等于( )。 A、偶数  B、奇数 C、4的倍数 D、2的正整数次幂 4、下列哪个偏序集构成有界格( ) A、(N,)  B、(Z,) C、({2,3,4,6,12},|(整除关系))  D、 (P(A),) 5、设S3={(1),(12),(13),(23),(123),(132)},那么,在S3中可以与(123)交换的所有元素有A、(1),(123),(132) B、12),(13),(23) C(1),(123) D、S3中的所有元素是与间的一一映射,是的一个元,则----------。 3、区间[1,2]上的运算的单位元是-------。 4、可换群G中|a|=6,|x|=8,则|ax|=——————————。 5、环Z8的零因子有 -----------------------。 6、一个子群H的右、左陪集的个数----------。 7、从同构的观点,每个群只能同构于他/它自己的---------。 8、无零因子环R中所有非零元的共同的加法阶数称为R的-----------。 9、设群中元素的阶为,如果,那么与存在整除关系为--------。 三、解答题(本大题共3小题,每小题10分,共30分) 1、用2种颜色的珠子做成有5颗珠子项链,问可做出多少种不同的项链? 2、S1,S2是A的子环,则S1∩S2也是子环。S1+S2也是子环吗? 3、设有置换,。 1.求和; 2.确定置换和的奇偶性。 四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分) 1、一个除环R只有两个理想就是零理想和单位理想。 2、M为含幺半群,证明b=a-1的充分必要条件是aba=a和ab2a=e。 近世代数模拟试题三 参考答案 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、C;2、C;3、D;4、D;5、A; 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、唯一、唯一;2、;3、2;4、24;5、;6、相等;7、商群;8、特征;9、; 三、解答题(本大题共3小题,每小题10分,共30分) 1、解 在学群论前我们没有一般的方法,只能用枚举法。用笔在纸上画一下,用黑白两种珠子,分类进行计算:例如,全白只1种,四白一黑1种,三白二黑2种,…等等,可得总共8种。 2、证 由上题子环的充分必要条件,要证对任意a,b∈S1∩S2 有a-b, ab∈S1∩S2: 因为S1,S2是A的子环,故a-b, ab∈S1和a-b, ab∈S2 , 因而a-b, ab∈S1∩S2 ,所以S1∩S2是子环。 S1+S2不一定是子环。在矩阵环中很容易找到反例: 3、解: 1.,; 2.两个都是偶置换。 四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分) 1、证明:假定是R的一个理想而不是零理想,那么a,由理想的定义,因而R的任意元 这就是说=R,证毕。 2、证 必要性:将b代入即可得。 充分性:利用结合律作以下运算: ab=ab(ab2a)=(aba)b2a=ab2a=e, ba=(ab2a)ba=ab2 (aba)=ab2a=e, 所以b=a-1。 —————————————————————————————————————— 一.判断题(每小题2分,共20分) 1. 实数集关于数的乘法成群. ( ) 2. 若是群的一个非空有限子集,且都有成立,则是的一个子群. ( ) 3. 循环群一定是交换群. ( ) 4. 素数阶循环群是单群.

文档评论(0)

junjun37473 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档