考研数学大纲详解[教材剖析].doc

  1. 1、本文档共19页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
考研数学大纲详解[教材剖析]

6?????高 等 数 学 考研指定教材:同济大学数学系主编《高等数学》(上下册)(第六版) 第一章 函数与极限 (7天)(考小题) 学习内容复习知识点与对应习题大纲要求:映射与函数 (一般章节)函数的概念,常见的函数(有界函数、奇函数与偶函数、单调函数、周期函数)、复合函数、反函数、初等函数具体概念和形式.(集合、映射不用看;双曲正弦,双曲余弦,双曲正切不用看) 习题1-1:4,5,6,7,8,9,13, 15,16(重点)1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念. 5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限???间的关系. 6.掌握极限的性质及四则运算法则. 7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.: 数列的极限 (一般章节)数列定义,数列极限的性质(唯一性、有界性、保号性 )(本节用极限定义证明极限的题目考纲不作要求,可不看,如P26例1,例2,例3,定理1,2,3的证明都不作要求,但要理解;定理4不用看) 习题1-2:1: 函数的极限 (一般章节)函数极限的基本性质(不等式性质、极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的关系等) P33(例4,例5)(例7不用做,定理2,3的证明不用看,定理4不用看) 习题1-3:1,2,3,4: 无穷大与无穷小(重要)无穷小与无穷大的定义,它们之间的关系,以及与极限的关系(无穷小重要,无穷大了解) (例2不用看,定理2不用证明) 习题1-4:1,6: 极限的运算法则(掌握)极限的运算法则(6个定理以及一些推论) (注意运算法则的前提条件是否各自极限存在)(定理1,2的证明理解,推论1,2,3,定理6的证明不用看)P46(例3,例4),P47(例6) 习题1-5:1,2,3,4,5(重点): 极限存在准则(理解) 两个重要极限(重要)两个重要极限(要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式,要会证明两个重要极限),函数极限的存在问题(夹逼定理、单调有界数列必有极限),利用函数极限求数列极限,利用夹逼法则求极限,求递归数列的极限(准则1的证明理解,第一个重要极限的证明一定要会,另一个重要极限的证明不用看,柯西存在准则不用看) P51(例1)习题1-6:1,2,4: 无穷小的比较(重要)无穷小阶的概念(同阶无穷小、等价无穷小、高阶无穷小、k阶无穷小),重要的等价无穷小(尤其重要,一定要烂熟于心)以及它们的重要性质和确定方法(定理1,2的证明理解) P57(例1)P58(例5)习题1-7:全做: 函数的连续性与间断点(重要,基本必考小题)函数的连续性,间断点的定义与分类(第一类间断点与第二类间断点),判断函数的连续性(连续性的四则运算法则,复合函数的连续性,反函数的连续性)和间断点的类型。 例1-例5习题1-8:1,2,3,4,5(重点): 连续函数的运算与初等函数的连续性(了解)连续函数的运算与初等函数的连续性(包括和,差,积,商的连续性,反函数与复合函数的连续性,初等函数的连续性) (定理3,4的证明不用看) 例4-例8 习题1-9:1,2,3,4,5,6(重点): 闭区间上连续函数的性质(重要,不单独考大题,但考大题特别是证明题会用到)理解闭区间上连续函数的性质:有界性与最大值最小值定理,零点定理与介值定理(零点定理对于证明根的存在是非常重要的一种方法).(一致连续性不用看)例1-例2 习题1-10:1,2,3,5(要会用5题的结论)自我小结总复习题一:除了7,8,9以外均做, 3,5,11,14(重点)本章测试题- 检验自己是否对本章的复习合格(合格成绩为80分以上),如果合格继续向前复习,如果不合格总结自己的薄弱点还要针对性的对本章的内容进行复习或者到总部答疑。 第二章 导数与微分(6天)(小题的必考章节)?? 学习内容复习知识点与对应习题大纲要求: 导数的概念(重要)导数的定义、几何意义、物理意义(数三不作要求,可不看,数三要知道导

文档评论(0)

junjun37473 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档