高中数学-分类讨论思想.转化与化归思想.pptVIP

高中数学-分类讨论思想.转化与化归思想.ppt

  1. 1、本文档共45页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
高中数学-分类讨论思想.转化与化归思想

第2讲 分类讨论思想、转化与化归思想;1.分类讨论思想 分类讨论的思想是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.对问题实行分类与整合,分类标准等于增加一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),优化解题思路,降低问题难度.;分类讨论的常见类型: (1)由数学概念引起的分类讨论:有的概念本身就是分类的,如绝对值、直线斜率、指数函数、对数函数等. (2)由性质、定理、公式的限制引起的分类讨论:有的定理、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n项和公式、函数的单调性等. (3)由数学运算和字母参数变化引起分类;如偶次方根非负,对数的底数与真数的限制,方程(不等式)的运算与根的大小比较,含参数的取值不同会导致所得结果不同等.;(4)由图形的不确定性引起的分类:有的图形的形状、位置关系需讨论,如二次函数图象的开口方向,点、线、面的位置关系,曲线系方程中的参数与曲线类型等. 分类讨论思想,在近年高考试题中频繁出现,涉及各种题型,已成为高考的热点,考查的重点是含参数函数性质、不等式(方程)问题,与等比数列的前n项和有关的计算推理,点、线、面的位置以及直线与圆锥曲线的位置关系不定问题等.;2.转化与化归思想 化归与转化是指在处理问题时,把待解决或难解决的问题通过某种方式转化为一类已解决或比较容易解决的问题的一种思想方法,它是研究和解决数学问题的核心思想,化归与转化思想方法的特点是具有灵活性和多样性.在应用化归与转化的思想方法去解决数学问题时,没有一个统一的模式,它可以在数与数、形与形、数与形之间进行转换.在实际解题过程中,实施化归与转化时,我们要遵循以下五项基本原则:(1)化繁为简的原则;(2)化生为熟的原则;(3)等价性原则;(4)正难则反原则;(5)形象具体化原则.;历年高考中,化归与转化思想无处不在,我们要不断培养和训练自觉的转化意识,将有利于提高解决数学问题的应变能力,提高思维能力和技能、技巧. ;安全文明网 / 2016安全文明驾驶常识模拟考试 安全文明驾驶常识2016年安全文明驾驶常识模拟 2016文明驾驶 2016文明驾驶考题 安全文明网 /kaoshi/mn/ 科四安全文明驾驶考试 安全文明网 /kaoshi/c1/ c1安全文明驾驶考试 安全文明网 /kaoshi/b2/ b2安全文明驾驶考试 安全文明网 /kaoshi/a1/ a1安全文明驾驶考试 科目4考试 /kaoshi/a2/ a2安全文明驾驶考试 科目四考试 /kaoshi/cs/ 安全文明驾驶常识考试;探究提高 (1)分段函数在自变量不同取值范围内,对应关系不同,必需进行讨论.由数学定义引发的分类讨论一般由概念内涵所决定,解决这类问题要求熟练掌握并理解概念的内涵与外延.(2)在数学运算中,有时需对不同的情况作出解释,就需要进行讨论,如解二次不等式涉及到两根的大小等.;探究提高 (1)本题中直角顶点的位置不定,影响边长关系,需按直角顶点不同的位置进行讨论.(2)涉及几何问题时,由于几何元素的形状、位置变化的不确定性,需要根据图形的特征进行分类讨论.;[微题型3] 由定理、性质、公式等引起的分类讨论 【例1-3】 已知等差数列{an}的前3项和为6,前8项和为-4. (1)求数列{an}的通项公式; (2)设bn=(4-an)qn-1(q≠0,n∈N*),求数列{bn}的前n项和Sn.;探究提高 (1)利用等比数列的前n项和公式时,需要分公比q=1和q≠1两种情况进行讨论,这是由等比数列的前n项和公式决定的.一般地,在应用带有限制条件的公式时要小心,根据题目条件确定是否进行分类讨论. (2)由性质、定理、公式等引起的讨论,主要是应用的范围受限时,存在多种可能性.;[微题型4] 由字母参数引起的分类讨论 【例1-4】 已知函数f(x)=ln x-a2x2+ax(a∈R). (1)求f(x)的单调区间与极值; (2)若函数f(x)在区间(1,+∞)上单调递减,求实数a的取值范围.;探究提高 一般地,遇到题目中含有参数的问题,常常结合参数的意义及对结果的影响进行分类讨论,此种题目为含参型,应全面分析参数变化引起结论的变化情况,参数有几何意义时还要考虑适当地运用数形结合思想,分类要做到分类标准明确,不重不漏.;【训练1】 (2014·洛阳统一考试)已知圆心为F1的圆的方程为(x+2)2+y2=32,F2(2,0),C是圆F1上的动点,F2C的垂直平分线交F1C于M. (1)求动点M的轨迹方程; (2)设N(0,2),过点P(-1,-2)作直线l,交M的轨迹于不同于N的A,B两点,直线NA,NB的斜率分别为k1,k

文档评论(0)

jdy261842 + 关注
实名认证
文档贡献者

分享好文档!

1亿VIP精品文档

相关文档