- 1、本文档共8页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
66基于动态模型按转子磁链定向的矢量控制系统
6.6 基于动态模型按转子磁链定向的矢量控制系统 本节提要 矢量控制系统的基本思路 按转子磁链定向的矢量控制方程及其解耦作用 转子磁链模型 转速、磁链闭环控制的矢量控制系统——直接矢量控制系统 磁链开环转差型矢量控制系统——间接矢量控制系统 一、 矢量控制系统的基本思路 在前面已经阐明,以产生同样的旋转磁动势为准则,在三相坐标系上的定子交流电流,通过三相/两相变换可以等效成两相静止坐标系上的交流电流,再通过同步旋转变换,可以等效成同步旋转坐标系上的直流电流和。 异步电机的坐标变换结构图 图6-52 异步电动机的坐标变换结构图3/2——三相/两相变换; VR——同步旋转变换;——M轴与轴(A轴)的夹角 既然异步电机经过坐标变换可以等效成直流电机,那么,模仿直流电机的控制策略,得到直流电机的控制量,经过相应的坐标反变换,就能够控制异步电机了。 由于进行坐标变换的是电流(代表磁动势)的空间矢量,所以这样通过坐标变换实现的控制系统就叫作矢量控制系统(Vector Control System),控制系统的原理结构如下图所示。图6-53 矢量控制系统原理结构图 在设计矢量控制系统时,可以认为,在控制器后面引入的反旋转变换器VR-1与电机内部的旋转变换环节VR抵消,2/3变换器与电机内部的3/2变换环节抵消,如果再忽略变频器中可能产生的滞后,则图6-53中虚线框内的部分可以完全删去,剩下的就是直流调速系统了。 二、 按转子磁链定向的矢量控制方程及其解耦作用 问题的提出 上述只是矢量控制的基本思路,其中的矢量变换包括三相/两相变换和同步旋转变换。在进行两相同步旋转坐标变换时,只规定了d,q两轴的相互垂直关系和与定子频率同步的旋转速度,并未规定两轴与电机旋转磁场的相对位置,对此是有选择余地的。 按转子磁链定向 现在d轴是沿着转子总磁链矢量的方向,并称之为 M(Magnetization)轴,而 q 轴再逆时针转90°,即垂直于转子总磁链矢量,称之为 T(Torque)轴。 这样的两相同步旋转坐标系就具体规定为 M,T 坐标系,即按转子磁链定向(Field Orientation)的坐标系。 当两相同步旋转坐标系按转子磁链定向时,应有 按转子磁链定向后的系统模型 代入转矩方程式(6-113)和状态方程中并用m,t替代d,q,即得 由于,状态方程中的式(6-132)蜕化为代数方程,整理后得转差公式 这使状态方程降低了一阶。 由式(6-131)可得 按转子磁链定向的意义 式(6-136)或式(6-137)表明,转子磁链仅由定子电流励磁分量产生,与转矩分量无关,从这个意义上看,定子电流的励磁分量与转矩分量是解耦的。 式(6-136)还表明,与之间的传递函数是 一阶惯性环节,时间常数为转子磁链励磁时间常数,当励磁电流分量突变时,的变化要受到励磁惯性的阻挠,这和直流电机励磁绕组的惯性作用是一致的。 式(6-136)或(6-137)、(6-135)和(6-129)构成矢量控制基本方程式,按照这些关系可将异步电机的数学模型绘成图6-54中的形式,图中前述的等效直流电机模型(见图6-52)被分解成 和两个子系统。可以看出,虽然通过矢量变换,将定子电流解耦成和两个分量,但是,从和两个子系统来看,由于同时受到和的影响,两个子系统仍旧是耦合着的。 电流解耦数学模型的结构图6-54 异步电动机矢量变换与电流解耦数学模型 按照图6-53的矢量控制系统原理结构图模仿直流调速系统进行控制时,可设置磁链调节器和转速调节器ASR分别控制和,如图6-55所示。 为了使两个子系统完全解耦,除了坐标变换以外,还应设法抵消转子磁链对电磁转矩的影响。 矢量控制系统原理结构图图6-55 比较直观的办法是,把ASR的输出信号除以,当控制器的坐标反变换与电机中的坐标变换对消,且变频器的滞后作用可以忽略时,此处的()便可与电机模型中的()对消,两个子系统就完全解耦了。这时,带除法环节的矢量控制系统可以看成是两个独立的线性子系统,可以采用经典控制理论的单变量线性系统综合方法或相应的工程设计方法来设计两个调节器和ASR。 解耦条件 因此,两个子系统完全解耦只有在下述三个假定条件下才能成立: ①转子磁链的计算值等于其实际值; ②转子磁场定向角的计算值等于其实际值; ③忽略电流控制变频器的滞后作用。 三、转子磁链模型 1、 按
文档评论(0)