- 1、本文档共7页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
PAGE
PAGE 7
班次 姓名
3.2.1 古典概型 (第一课时)
[自我认知]:
1.在所有的两位数(10-99)中,任取一个数,则这个数能被2或3整除的概率是 ( )
A. B. C. D.
2.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为 ( )
A. 60% B. 30% C. 10% D. 50%
3.根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为 ( )
A. 0.65 B. 0.55 C. 0.35 D. 0.75
4.某射手射击一次,命中的环数可能为0,1,2,…10共11种,设事件A:“命中环数大于8”,事件B:“命中环数大于5”,事件C:“命中环数小于4”,事件D:“命中环数小于6”,由事件A、B、C、D中,互斥事件有 ( )
A. 1对 B. 2对 C. 3对 D.4对
5.产品中有正品4件,次品3件,从中任取2件,其中事件:①恰有一件次品和恰有2件次品;②至少有1件次品和全都是次品;③至少有1件正品和至少有一件次品;④至少有1件次品和全是正品.4组中互斥事件的组数是 ( )
A. 1组 B. 2组 C. 3组 D. 4组
6.某人在打靶中连续射击2次,事件“至少有一次中靶”的互斥事件是 ( )
A.至多有一次中靶 B. 两次都中靶
C.两次都不中靶 D.只有一次中靶
7.对飞机连续射击两次,每次发射一枚炮弹,设A=﹛两次都击中﹜,B=﹛两次都没击中﹜,C=﹛恰有一次击中﹜,D=﹛至少有一次击中﹜,其中彼此互斥的事_____________________,互为对立事件的是__________________。
8.从甲口袋中摸出1个白球的概率是,从乙口袋中摸出一个白球的概率是,那么从两个口袋中各摸1个球,2个球都不是白球的概率是___________。
9.袋中装有100个大小相同的红球、白球和黑球,从中任取一球,摸出红球、白球的概率各是0.40和0.35,那么黑球共有______________个
[课后练习]
10.在下列试验中,哪些试验给出的随机事件是等可能的?
投掷一枚均匀的硬币,“出现正面”与“出现反面”。
一个盘子中有三个大小完全相同的球,其中红球、黄球、黑球各一个,从中任取一个球,“取出的是红球”,“取出的是黄球”,“取出的是黑球”。
一个盒子中有四个大小完全相同的球,其中红球、黄球各一个,黑球两个,从中任取一球, “取出的是红球”,“取出的是黄球”,“取出的是黑球”。
11.随意安排甲、乙、丙三人在三天节日里值班,每人值一天,请计算:
①这三人的值班顺序共有多少种不同的安排方法?
②甲在乙之前的排法有多少种?
③甲排在乙之前的概率是多少?……
12.假如小猫在如图所示的地板上自由的走来走去,并随意停留在某块方砖上,它最终停留在黑色方砖上的概率是多少?(图中每一块方砖除了颜色外完全相同)
13.从一个装有2黄2绿的袋子里有放回的两次摸球,两次摸到的都是绿球的概率是多少?
班次 姓名
3.2.1 古典概型 (第二课时)
[自我认知]:
1.从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,那么这2 张纸片数字之积为偶数的概率为 ( )
A. B. C. D.
2.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率( )
A. B. C. D. 1
3.在下列结论中,正确的为
文档评论(0)