Low-rank Modeling and its Applications in Medical Image Analysis.pdf

Low-rank Modeling and its Applications in Medical Image Analysis.pdf

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Low-rank Modeling and its Applications in Medical Image Analysis

Low-rank Modeling and its Applications in Medical Image Analysis Xiaowei Zhou and Weichuan Yu? The Hong Kong University of Science and Technology, Hong Kong SAR, China ABSTRACT Computer-aided medical image analysis has been widely used in clinics to facilitate objective disease diagnosis. This facilitation, however, is often qualitative instead of quantitative due to the analysis challenges associated with medical images such as low signal-to-noise ratio, signal dropout, and large variations. Consequently, physi- cians have to rely on their personal experiences to make diagnostic decisions, which in turn is expertise-dependent and prone to individual bias. Recently, low-rank modeling based approaches have achieved great success in natural image analysis. There is a trend that low-rank modeling will find its applications in medical image analysis. In this review paper, we like to review the recent progresses along this direction. Concretely, we will first explain the mathematical background of low-rank modeling, categorize existing low-rank modeling approaches and their applications in natural image analysis. After that, we will illustrate some application examples of using low-rank modeling in medical image analysis. Finally, we will discuss some possibilities of developing more robust analysis methods to better analyze cardiac images. Keywords: Review, low-rank, computer vision, medical image analysis 1. INTRODUCTION In many areas of image analysis, the latent structure underlying image data is assumed to be a low-dimensional subspace. Multiple vectorized images will form a low-rank matrix. Specific examples include background images under different illuminations, dynamic textures with periodicity, a group of similar shapes, and 3-D trajectories of feature points on a rigid object. Therefore, relevant tools such as principal component analysis have been widely used in various problems to explore the low-rank structure of data. In early literatures, the low-rank pro

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档