(ppt) IBM Content Based Copy Detection System for TRECVID 2009.pdf

(ppt) IBM Content Based Copy Detection System for TRECVID 2009.pdf

  1. 1、本文档共19页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
(ppt) IBM Content Based Copy Detection System for TRECVID 2009

? 2009 IBM Corporation IBM Content Based Copy Detection System for TRECVID 2009 Speaker: Matt Hill On behalf of: Jane Chang, Michele Merler, Paul Natsev, John R. Smith ? 2009 IBM CorporationIBM Research  We explored 4 complementary approaches for video fingerprinting: – Two frame-based visual fingerprints (color correlogram and SIFTogram) – Two temporal sequence-based fingerprints (audio motion activity)  Key question: How far can we go with coarse-grain fingerprints? – Focus on common real-world transforms typical for video piracy detection – Focus on speed, space efficiency, lack of false alarms System Overview Videosi S e g m e n t - b a s e d F i n g e r p r i n t s S e g m e n t - b a s e d F i n g e r p r i n t s Motion activityti ti it Audio activityi ti it SIFTogramI r Color correlograml r rr l r F r a m e - b a s e d F i n g e r p r i n t s F r a m e - b a s e d F i n g e r p r i n t s Fingerprints Fusion Mean-Normalized Video-Only Run - r liz i - l Median-Normalized Video-Only Run i - r liz i - l Mean-Normalized Audio-Video run - r liz i - i r Median-Normalized Audio-Video Run i - r liz i - i ? 2009 IBM CorporationIBM Research We focused on CBCD transforms that represent typical video piracy scenarios (i.e., ignore PIP and post-production edits)  T2: Picture in picture Type 1 (The original video is inserted in front)  T3: Insertions of pattern  T4: Strong re-encoding  T5: Change of gamma  T6: Decrease in quality -- This includes choosing randomly 3 transformations from the following: Blur, change of gamma, frame dropping, contrast, compression, ratio, white noise  T8: Post production -- This includes choosing randomly 3 transformations from the following: Crop, Shift, Contrast, caption (text insertion), flip (mirroring), Insertion of pattern, Picture in Picture type 2 (the original video is in the background)  T10: change to randomly choose 1 transformation from each of the 3 main categories. We focused on the

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档