- 1、本文档共13页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
线性代数§n阶行列式习题与答案
§1.2 n阶行列式
为了得到更为一般的线性方程组的求解公式,我们需要引入n阶行列式的概念。为此,先介绍排列的有关知识。
㈠排列与逆序:(课本P4)
1、排列的定义:由数码1,2,…,n,组成一个有序数组,称为一个n级排列。
【例1】1234是一个4级排列,
3412也是一个4级排列,
而52341是一个5级排列。(课本P4中例)
【例2】由数码1,2,3 组成的所有3级排列为:123,132,213,231,312,321共有3! = 6个。
【例3】数字由小到大的n级排列1234…n 称为自然序排列。
2、逆序的定义:在一个n级排列中,如果有较大的数排在的前面,则称与构成一个逆序。(课本P4)
【例4】在4 级排列3412中, 31,32,41,42,各构成一个逆序,
在5 级排列34152中, 31,32,41,42,52,共构成5个逆序。
3、逆序数的定义:一个n级排列中逆序的总数,称为这个排列的逆序数,记为。(课本P4)
【例5】排列3412的逆序数为N(3412) = 4,
排列52341的逆序数为N(52341) = 7,
自然序排列的逆序数为0。
4、奇、偶排列的定义:如果排列的逆序数是奇数,则将称为奇排列;如果排列的逆序数是偶数,则将称为偶排列。(课本P4)
【例6】由于N(3412) = 4,知排列3412是偶排列,
由于N(52341) =7,知排列52341是奇排列,
由于N(123…n) = 0,知自然排列123…n是偶排列。
【例7】由数码1,2,3组成的所有3级排列为:123,132,213,231,312,321共有3! = 6个,其中,奇排列有132,213,321三个,偶排列有123,312,231三个。奇偶排列各占一半。
5、对换的定义:在一个n级排列中,如果其中某两个数与对调位置,其余各数位置不变,就得到另一个新的n级排列,这样的变换称为一个对换,记作。(课本P5)
【例8】在排列3412中,将4与2对换, 得到新的排列3214。
【例9】偶排列3412经过4与2的对换后,变成了奇排列3214;
反之,奇排列3214经过2与4的对换后,变成了偶排列3412。
定理1.1 任意一个排列经过一个对换后,其奇偶性改变。(课本P5)
定理的证明见课本P5。
【例10】奇排列132经对换(3,2)得到偶排列123,
偶排列312经对换(1,2)得到奇排列321。
定理1. 2 n个数码()共有n!个n 级排列,其中奇、偶排列各占一半。(课本P6)
定理的证明见课本P6。
【例11】由数码1,2,3组成的所有3级排列为:123,132,213,231,312,321共有3! = 6个,其中,奇排列有132,213,321三个,偶排列有123,312,231三个。
相应练习见课本
【第四版】习题一(A)中的8大题。
===============================================
㈡ n阶行列式的定义:(课本P6)
我们从观察二阶、三阶行列式的特征入手,引出n阶行列式的定义。
二阶行列式为,
三阶行列式为
,
我们可以从二阶、三阶行列式中发现以下规律:
(1) 二阶行列式是2!项的代数和,三阶行列式是3!项的代数和;
(2) 二阶行列式中每一项是两个元素的乘积,它们分别取自不同的行和不同的列,
三阶行列式中的每一项是三个元素的乘积,它们也是取自不同的行和不同的列;
(3) 每一项的符号是:当这一项中元素的行标是按自然序排列时,如果元素的列标为偶排列,则取正号;为奇排列,则取负号。
作为二、三阶行列式的推广,我们给出n阶行列式的定义。
定义1.2 用个元素()和双竖线组成的记号
称为n阶行列式。有时简记为。(课本P7)
n阶行列式的定义包含如下的内容:
⑴构成:n阶行列式的横排称为行,纵排称为列。元素的第一个下标表示这个元素位于第行,称为行标,第二个下标表示这个元素位于第列,称为列标。(课本P7)
【例12】三阶行列式 有3行3列共32 = 9个元素。
其中,第二行元素为 1,4,7;第二列元素为5,4,6,
元素7的位置为第2行第3列。
⑵含义:n阶行列式是n ! 个项的代数和,其中每一项是取自不同行和不同列的n个元素的乘积。(课本P8)
由于一个项中的n个乘积元素来自不同的行,而乘法满足交换率,故为方便分析,可以将n个元素按行码的自然数顺序排列,再分析列码的状态。
当行码按自然序列排列后,列码的不同排列即对应不同的项,由于n个元素共有不同排列n!个,从而n阶行列式中共有n!个不同的项。
【例13】一阶行列式│a│= a只有1个项。
【例14】三阶行列式
,
共有3!=6个不同的项,
和的元素都来自不同行且不同列,都可能是A中的一个项,
而中的与同来自第
您可能关注的文档
最近下载
- 12gre填空pass 150题合并版.pdf VIP
- 外墙高空作业施工方案范本.docx VIP
- 管道沟槽开挖专项施工方案.pdf
- 四川省2024年普通高校对口招生统一考试数学试卷(含答案) (5).docx
- 关于医院医疗领域群众身边不正之风和腐败问题集中整治工作方案.docx VIP
- 《计算机应用基础》课程思政教案一.pdf VIP
- 语文人教版七年级上册课本剧范文(通用5篇).doc
- 2022年秋季新版--小学英语 5年级 五年级上册《53天天练》测评卷 冀教版 JJ.docx VIP
- 国家开放大学电大《计算机应用基础(本)》终结性考试试题.docx
- 2021年小学六年级数学总复习新版题库分类.pdf VIP
文档评论(0)