- 1、本文档共7页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
线代考试复习指导
《线性代数》学习指导
2.知识要点
第一章《行列式》、第二章《矩阵》
它是线性代数中的基础章节,有必要熟练掌握。第一章行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算,其中具体行列式的计算又有低阶和n阶两种类型;主要方法是应用行列式按行(列)展开定理和利用行列式的性质(6条)化为上下三角行列式求解,还可能用到的方法包括:行列式的定义(n阶行列式的值为取自不同行、不同列的n个元素的乘积的代数和)、性质(其中为矩阵A的特征值)、行列式的性质(如“数乘行列式等于用此数乘一行列式中的某一行或某一列”)。对于抽象行列式的求值,考点不在求行列式,而在于、、等的相关性质。
第二章矩阵中的知识点很细碎,但好在每个小知识点包括的内容都不多,没有什么深度。矩阵部分出题很灵活,考察知识点包括矩阵运算的运算规律、,,的性质、判定条件及求法、矩阵秩的定义、性质及求法、
分块矩阵的计算方法(特别是分块对角阵)。所以复习本章的难度主要在于如何保证复习的全面细致。
线代第三章《向量》、第四章《线性方程组》
线代第三章《线性方程组》、第四章《向量》是整个线性代数部分的核心内容,相比之下,前两章行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,后两章特征值、特征向量、二次型的内容则相对独立, 可以看作是对第三、四章核心内容的扩展。
向量与线性方程组两章的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两章最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。重点掌握用初等行变换求解线性方程组的方法。理解齐次线性方程组的基础解系、通解及解的结构和判定定理,矩阵、向量组的秩等概念和定理。
解线性方程组可以看作是这两章内容的出发点和目标。线性方程组的系数矩阵是m行n列的,其有两种形式,一种是矩阵形式;其中是系数矩阵,,;另一种是向量形式,其中 。向量就这样被引入了,可能早期的数学家研究向量就是为了更好的研究解方程组的问题。
先讨论其次线性方程组与线性相关、无关的联系。齐次线性方程组可以直接看出是一定有解的,因为当式等式一定成立,印证了第三章向量部分的一条性质“0向量可由任何向量线性表示”,即当中的时一定存在一组数使等式成立,至少在全为0时可以满足。
齐次线性方程组一定有解又可以分为两种情况:1.有唯一零解;2.有非零解。当齐次线性方程组有唯一零解时,是指等式中的只能全为0才能使等式成立,而第四章向量部分中判断向量组是否线性相关、无关也正是由这个等式定义出的。线性相关的定义为:设为一组向量,如果存在一组不为零的数使得等式成立,则称向量组线性相关;如果等式当且仅当时成立,则称向量组线性无关。故向量与线性方程组在此又产生了联系:齐次线性方程组是否有非零解对应于系数矩阵A的列向量组是否线性相关。(这些联系肯定不是简单的巧合,而是数学史上前后相承的发展,或许线性相关、无关的概念正是数学家在研究线性方程组问题的过程中发现的。)
例如线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的,那同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”,向量组组成的矩阵有说明向量组的极大线性无关组中有n个向量,即线性无关,也即等式只有0解。所以,经过“秩线性相关、无关线性方程组解的判定”的逻辑链条,由就可以判定齐次方程组只有0解。当时,按照齐次线性方程组解的判定法则,此时有非零解,且有个线性无关的解向量。这又与另一条性质相和:如果齐次线性方程组方程个数小于未知量个数则必有非零解。若方程组的系数矩阵是行列的,则方程个数小于未知量个数时有;因为矩阵的秩等于行秩也等于列秩,所以必有,根据齐次方程组解的判定定理有非零解。
对于非齐次方程组来说,其解的判定定理与“线性表示”的概念前后联系:非齐次方程组是否有解对应于向量是否可由的列向量线性表示。线性表示的定义为:对于向量组若存在一组数使等式成立,则称向量可由向量组线性表示。而使上述等式成立的就是非齐次方程组的解,故齐次方程组有性质“齐次线性方程组是否由非零解对应于系数矩阵的列向量组是否线性向关”,非齐次方程组也由对应性质“非齐次线性方程组是否有解对应于向量是否可由的列向量线性表示”。当非齐次线性方程组与对应齐次线性方程组满足时,根据线性方程组解的判定法则,齐次方程组有零解,非齐次方程组有唯一解。这一点也正好印证了一个重要定理:“若线性无关,而线性相关,则向量可由向量组线性表示,且表示方法唯一”。
三个双重定义:
1.秩的定义 (1).矩阵秩的定义:矩阵中最高阶非零子式的最高阶数
(2)向量组秩定义:向量组的最大线性无关组中所含的向量个数
2
您可能关注的文档
最近下载
- 12gre填空pass 150题合并版.pdf VIP
- 外墙高空作业施工方案范本.docx VIP
- 管道沟槽开挖专项施工方案.pdf
- 四川省2024年普通高校对口招生统一考试数学试卷(含答案) (5).docx
- 关于医院医疗领域群众身边不正之风和腐败问题集中整治工作方案.docx VIP
- 《计算机应用基础》课程思政教案一.pdf VIP
- 语文人教版七年级上册课本剧范文(通用5篇).doc
- 2022年秋季新版--小学英语 5年级 五年级上册《53天天练》测评卷 冀教版 JJ.docx VIP
- 国家开放大学电大《计算机应用基础(本)》终结性考试试题.docx
- 2021年小学六年级数学总复习新版题库分类.pdf VIP
文档评论(0)