- 1、本文档共119页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
浙教版八年级上册全册教案
1.1 同位角 内错角 同旁内角
〖教学目标〗
◆1、了解同位角、内错角、同旁内角的意义。
◆2、会在简单的图形中辨认同位角、内错角、同旁内角。
◆3、会在给定某个条件下进行有关同位角、内错角、同旁内角的判定和计算。
〖教学重点与难点〗
◆教学重点:同位角、内错角、同旁内角的概念。
◆教学难点:各对关系角的辨认,复杂图形的辨认是本节教学的难点。
〖教学过程〗
(三)教学过程:
引入:中国最早的风筝据说是由古代哲学家墨翟制作的,风筝的骨架构成了多种关系的角。
这就是我们这节课要讨论的问题:两条直线和第三条直线相交的关系。
二.让我们接受新的挑战:
------讨论:两条直线和第三条直线相交的关系
如图:两条直线a1 , a2和第三条直线a3相交。
(或者说:直线 a1 , a2 被直线 a3 所截。))
其中直线 a1 与直线 a3 相交构成四个角,直线 a2 与直线 a3 相交构成四个角。所以这个问题我们经常就叫它“三线八角”问题。
三.让我们来了解 “三线八角”:
如图:直线 a1 , a2 被直线 a3 所截,构成了八个角。
1. 观察∠ 1与∠5的位置:它们都在第三条直线 a3 的同旁,并且分别位于直线 a1 , a2 的相同一侧,这样的一对角叫做“同位角”。
类似位置关系的角在图中还有吗?如果有,请找出来?
答: 有。 ∠2与∠6; ∠4与∠8; ∠3与∠7
2. 观察∠ 3与∠5的位置:它们都在第三条直线 a3 的异侧,并且都位于两条直线 a1 , a2 之间,这样的一对角叫做“内错角”。
类似位置关系的角在图中还有吗?如果有,请找出来?
答: 有。 ∠2与∠8
3. 观察∠ 2与∠5的位置:它们都在第三条直线 a3 的同旁,并且都位于两条直线 a1 , a2 之间,这样的一对角叫做“同旁内角”。
答: 有。 ∠3与∠8
四. 知识整理(反思):
问题1.你觉得应该按怎样的步骤在“三线八角”中确定关系角?
确定前提(三线) 寻找构成的角(八角) 确定构成角中的关系角
问题2:在下面同位角、内错角、同旁内角中任选一对,请你看看这对角的四条边与“前提”中的“三线”有什么关系?
结论:两个角的在同一直线上的边所在直线就是前提中的第三线。
五.试试你的身手:
例1:如图:请指出图中的同旁内角。(提示:请仔细读题、认真看图。)
答: ∠1与∠5; ∠4与∠6; ∠1与∠A; ∠5与∠A
合作学习:请找出以上各对关系角成立时的其余各对关系角。
1. 其中:∠1与∠5 ;∠4与∠6是直线 和直线 被直线 所截得到的同旁内角。此时三线构成了 个角。此时,同位角有: ,内错角有: 。
2.其中: ∠1与∠A是直线 和直线 被直线 所截得到的同旁内角。此时三线构成了 个角。此时,同位角有: ,内错角有: 。
3.其中: ∠5与∠A是直线 和直线 被直线 所截得到的同旁内角。此时三线构成了 个角。此时,同位角有: ,内错角有: 。
六.让我们自己来试一试 :(练习)
1.看图填空:
(1)若ED,BC被AB所截,则∠1与 是同位角。
(2)若ED,BC被AF所截,则∠3与 是内错角。
(3)∠1 与∠3是AB和AF被 所截构成的 角。
(4)∠2与∠4是 和 被BC所截构成的 角。
2. 如图:直线AB、CD 被直线 AC 所截,所产生的内错角是 。
如图:直线AD、BC 被直线 DC 所截,产生了 角,它们是 。
七.让我们步步登高:
例2:如图:直线DE交∠ABC的边BA于F。如果内错角∠1与∠2相等,那么与∠1相等的角还有吗?与∠1互补的角有吗?如果有,请写出来,并说明你的理由。
八.回顾这节课,你觉得下面的内容掌握了吗?或者说你注意到了吗?
1. 如何确定“三线”构成的“八角”。(注意“一个前提”)
2. 如何根据“关系角”确定
文档评论(0)