八年级数学上册电子教案设计(新人教版)1.doc

八年级数学上册电子教案设计(新人教版)1.doc

  1. 1、本文档共124页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第十一章 全等三角形 11.1全等三角形 教学目标: 1了解全等形及全等三角形的的概念; 2 理解全等三角形的性质; 3 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉; 4 学生通过观察、发现生活中的全等形和实际操作中获得全等三角形的体验在探索和运用全等三角形性质的过程中感受到数学的乐趣。 重点:探究全等三角形的性质 难点:掌握两个全等三角形的对应边,对应角 教学过程: 观察下列图案,指出这些图案中中形状与大小相同的图形 问题:你还能举出生活中一些实际例子吗? 这些形状、大小相同的图形放在一起能够完全重合。能够完全重合的两个图形叫做全等形 能够完全重合的两个三角形叫做全等三角形 引导学生完成课本P3思考: 归纳: 一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。 “全等”用“≌”表示,读作“全等于” 两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如⊿ABC和⊿DEF全等时,点A和点D,点B和点E,点C和点F是对应顶点,记作⊿ABC≌⊿DEF。把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角 思考:如课本P3思考图11.1-1中,⊿ABC≌⊿DEF,对应边有什么关系?对应角呢? 归纳: 全等三角形性质: 全等三角形的对应边相等; 全等三角形的对应角相等。 思考: (1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角 (2)将⊿ABC沿直线BC平移,得到⊿DEF,说出你得到的结论,说明理由? (3)如图,⊿ABE≌⊿ACD, AB与AC,AD与AE是对应边,已知:∠A=43°,∠B=30°,求∠ADC的大小。 作业:P4习题11.1第1,2,3题。 课题:11.2 三角形全等的判定(1) 教学目标 ①经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程. ②掌握三角形全等的“边边边”条件,了解三角形的稳定性. ③通过对问题的共同探讨,培养学生的协作精神. 教学难点 三角形全等条件的探索过程. 一、复习过程,引入新知 多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等. 二、创设情境,提出问题 根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢? 组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳. 三、建立模型,探索发现 出示探究1,先任意画一个△ABC,再画一个△ABC,使△ABC与△ABC,满足上述条件中的一个或两个.你画出的△ABC与△ABC一定全等吗? 让学生按照下面给出的条件作出三角形. (1)三角形的两个角分别是30°、50°. (2)三角形的两条边分别是4cm,6cm. (3)三角形的一个角为30°,—条边为3cm. 再通过画一画,剪一剪,比一比的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等. 出示探究2,先任意画出一个△ABC,使AB=AB,BC=BC,CA=CA,把画好的△ABC剪下,放到△ABC上,它们全等吗? 让学生充分交流后,在教师的引导下作出△ABC,并通过比较得出结论:三边对应相等的两个三角形全等. 四、应用新知,体验成功 实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的. 鼓励学生举出生活中的实例. 给出例l,如下图△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD. 让学生独立思考后口头表达理由,由教师板演推理过程. 例2 如图是用圆规和直尺画已知角的平分线的示意图,作法如下: ①以A为圆心画弧,分别交角的两边于点B和点C; ②分别以点B、C为圆心,相同长度为半径画两条弧,两弧交于点D; ③画射线AD. AD就是∠BAC的平分线.你能说明该画法正确的理由吗? 例3 如图四边形ABCD中,AB=CD,AD=BC,你能把四边形ABCD分成两个相互全等的三角形吗?你有几种方法?你能证明你的方法吗?试一试. 五、巩固练习:课本P8页的练习. 六、反思小结 回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律. 七、布置作业 课本P15习题11.2第1、2题. . 课题:11.2 三角形全等的判定2) 教学目标 ①经历探

文档评论(0)

we556 + 关注
实名认证
内容提供者

教师资格证持证人

该用户很懒,什么也没介绍

领域认证该用户于2023年03月21日上传了教师资格证

1亿VIP精品文档

相关文档