- 1、本文档共167页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第22章 二次根式
22.1 二次根式(1)
一、学习目标
1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:和
二、学习重点、难点
重点:二次根式有意义的条件;二次根式的性质.
难点:综合运用性质和。
三、学习过程
(一)复习引入:
(1)已知x2 = a,那么a是x的______; x是a的________, 记为______,
a一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;
正数a的算术平方根为_______,0的算术平方根为_______;
式子的意义是 。
(二)提出问题
1、式子表示什么意义?
2、什么叫做二次根式?
3、式子的意义是什么?
4、的意义是什么?
5、如何确定一个二次根式有无意义?
(三)自主学习
自学课本第2页例前的内容,完成下面的问题:
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?
,,,,,
2、计算 :
(1) (2)
(3) (4)
根据计算结果,你能得出结论: ,其中,
的意义是 。
3、当a为正数时指a的 ,而0的算术平方根是 ,负数 ,只有非负数a才有算术平方根。所以,在二次根式中,字母a必须满足 , 才有意义。
(三)合作探究
1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 :
x取何值时,下列各二次根式有意义?
① ② ③
2、(1)若有意义,则a的值为___________.
(2)若 在实数范围内有意义,则x为( )。
A.正数 B.负数 C.非负数 D.非正数
(四)展示反馈 (学生归纳总结)
1.非负数a的算术平方根(a≥0)叫做二次根式.
二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a必须是非负数。
2.式子的取值是非负数。
(五)精讲点拨
1、二次根式的基本性质()2=a成立的条件是a≥0,利用这个性质可以求二次根式的平方,如()2=5;也可以把一个非负数写成一个数的平方形式,如5=()2.
2、讨论二次根式的被开方数中字母的取值,实际上是解所含字母的不等式。
(五)拓展延伸
1、(1)在式子中,x的取值范围是____________.
(2)已知+=0,则x-y= _____________.
(3)已知y=+,则= _____________。
2、由公式,我们可以得到公式a= ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
(1)把下列非负数写成一个数的平方的形式:
5? 0.35
(2)在实数范围内因式分解
4a-11
(六)达标测试
A组
(一)填空题:
1、 =________;
2、 在实数范围内因式分解:
(1)x2-9= x2 - ( )2= (x+ ____)(x-____)
(2) x2 - 3 = x2 - ( ) 2 = (x+ _____) (x- _____)
(二)选择题:
1、计算 ( )
A. 169 B.-13 C±13 D.13
2、已知
A. x-3 B. x-3 C.x=-3 D x的值不能确定
3、下列计算中,不正确的是 ( )。
A. 3= B 0.5=
C .=0.3 D =35
B组
(一)选择题:
1、下列各式中,正确的是( )。
A. = B
C D
2、 如果等式= x成立,那么x为( )。
A x≤0; B.x=0 ; C.x0; D.x≥0
(二)填空题:
1、 若,则 = 。
2、分解因式:
X4 - 4X2 + 4= ________.
3、当x= 时,代数式有最小值,
其最小值是 。
二次根式(2)
一、学习目标
1、掌握二次根式的基本性质:
2、能利用上述性质对二次根式进行化简.
二、学习重点、难点
文档评论(0)