高一数学必修一电子教案设计.doc

  1. 1、本文档共103页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
课题:§1.1 集合 教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。 课 型:新授课 教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 教学重点:集合的基本概念与表示方法; 教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合; 教学过程: 引入课题 军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生? 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。 新课教学 (一)集合的有关概念 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。 一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。 关于集合的元素的特征 (1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。 (2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。 (3)集合相等:构成两个集合的元素完全一样 元素与集合的关系; (1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A (2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作aA(或a A)(举例) 常用数集及其记法 非负整数集(或自然数集),记作N 正整数集,记作N*或N+; 整数集,记作Z 有理数集,记作Q 实数集,记作R (二)集合的表示方法 我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。 列举法:把集合中的元素一一列举出来,写在大括号内。 如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…; 思考2,引入描述法 说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 如:{x|x-32},{(x,y)|y=x2+1},{直角三角形},…; 强调:描述法表示集合应注意集合的代表元素 {(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。 辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。 说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 归纳小结 本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。 课题:§1.2集合间的基本关系 教材分析:类比实数的大小关系引入集合的包含与相等关系 了解空集的含义 课 型:新授课 教学目的:(1)了解集合之间的包含、相等关系的含义; (2)理解子集、真子集的概念; (3)能利用Venn图表达集合间的关系; (4)了解与空集的含义。 教学重点:子集与空集的概念;用Venn图表达集合间的关系。 教学难点:弄清元素与子集 、属于与包含之间的区别; 教学过程: 引入课题 复习元素与集合的关系——属于与不属于的关系,填以下空白: (1)0 N;(2) Q;(3)-1.5 R 类比实数的大小关系,如57,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题) 新课教学 集合与集合之间的“包含”关系; A={1,2,3},B={1,2,3,4} 集合A是集合B的部分元素构成的集合,我们说集合B包含集合A; 如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。 记作: 读作:A包含于(is contained in)B,或B包含(contains)A 当集合A不包含

文档评论(0)

we556 + 关注
实名认证
内容提供者

教师资格证持证人

该用户很懒,什么也没介绍

领域认证该用户于2023年03月21日上传了教师资格证

1亿VIP精品文档

相关文档