- 1、本文档共11页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第五章 刚体的定轴转动
一 选择题
1. 一绕定轴转动的刚体,某时刻的角速度为?,角加速度为?,则其转动加快的依据是:( )
A. ?? 0 B. ?? 0,?? 0 C. ?? 0,?? 0 D. ?? 0,?? 0
解:答案是B。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。 ( )
A. 相等; B. 铅盘的大; C. 铁盘的大; D. 无法确定谁大谁小
解:答案是C。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:。
3. 一轻绳绕在半径为r的重滑轮上,轮对轴的转动惯量为J,一是以力F向下拉绳使轮转动;二是以重量等于F的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a1和a2,则有: ( )
A. a1 = a 2 B. a 1 a 2 C. a 1 a 2 D. 无法确定
解:答案是B。
简要提示:(1) 由定轴转动定律,和,得:
(2) 受力分析得:,其中m为重物的质量,T为绳子的张力。得:,所以a 1 a 2。
4. 一半径为R,质量为m的圆柱体,在切向力F作用下由静止开始绕轴线作定轴转动,则在2秒内F对柱体所作功为: ( )
A. 4 F2/ m B. 2 F2 / m C. F2 / m D. F2 / 2 m
解:答案是A。
简要提示:由定轴转动定律: ,得:
所以:
5. 一电唱机的转盘正以? 0的角速度转动,其转动惯量为J1,现将一转动惯量为J2的唱片置于转盘上,则共同转动的角速度应为: ( )
A. B. C. D.
解:答案是A。
简要提示:角动量守恒
6. 已知银河系中一均匀球形天体,现时半径为R,绕对称轴自转周期为T,由于引力凝聚作用,其体积不断收缩,假设一万年后,其半径缩小为r,则那时该天体的:( )
自转周期增加,转动动能增加;
自转周期减小,转动动能减小;
自转周期减小,转动动能增加;
自转周期增加,转动动能减小。
解:答案是C。
简要提示: 由角动量守恒,,得转动角频率增大,所以转动周期减小。转动动能为可得Ek Ek0。
7. 绳子通过高处一固定的、质量不能忽略的滑轮,两端爬着两只质量相等的猴子,开始时它们离地高度相同,若它们同时攀绳往上爬,且甲猴攀绳速度为乙猴的两倍,则 ( )
两猴同时爬到顶点
甲猴先到达顶点
乙猴先到达顶点
无法确定谁先谁后到达顶点
解:答案是B。
简要提示:考虑两个猴子和滑轮组成的系统,滑轮所受的外力(重力和支撑力)均通过滑轮质心,由于甲乙两猴的重量(质量)相等,因此在开始时系统对于通过滑轮质心并与轮面垂直的转轴的合外力矩为零,而在两猴攀绳过程中,系统受到的合外力矩始终保持为零,因此系统的角动量守恒。
设滑轮关于上述转轴的转动角速度为( ,乙猴相对于绳子的向上速率为v0,则甲相对绳子向上运动的速率为2v0。若绳子向甲这一边运动,速率为v,因此甲和乙相对地面向上运动的速率分别为(2v0 ( v)和(v0 + v)。根据系统的角动量守恒定律,有
即
即甲猴相对于地面的速率大于乙猴相对于地面的速率,故甲猴先到达顶点。
二 填空题
1. 半径为30cm的飞轮,从静止开始以0.5rad ( s–2的角加速度匀加速转动,则飞轮边缘上一点在转过2400时的切向加速度为 ;法向加速度为 。
解:答案是 0.15 m ( s–2; 0.4??m ( s–2。
简要提示:。
由,,得:
2. 一质量为0.5 k g、半径为0.4 m的薄圆盘,以每分钟1500转的角速度绕过盘心且垂直盘面的轴的转动,今在盘缘施以0.98N的切向力直至盘静止,则所需时间为 s。
解:答案是 16 s。
简要提示:由定轴转动定律,,,
得:
3 . 一长为l,质量不计的细杆,两端附着小球m1和m2(m1>m2),细杆可绕通过杆中心并垂直于杆的水平轴转动,先将杆置于水平然后放开,则刚开始转动的角加速度应为 。
解:答案是 。
简要提示:由定轴转动定律,
得:
4. 如图所示,质量为m0,半径为r的绕有细线的圆柱可绕固定水平对称轴无摩擦转动,若质量为m的物体缚在线索的一端并在重力作用下,由静止开始向下运动,当m下降h的距离时,m的动能与m0的动能之比为
文档评论(0)