- 1、本文档共5页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
导数及推理专题
导数及推理专题
导数概念的引入
导数的物理意义:瞬时速率。一般的,函数在处的瞬时变化率是,
我们称它为函数在处的导数,记作或,
即=
导数的几何意义:曲线的切线.通过图像,我们可以看出当点趋近于时,直线与曲线相切。容易知道,割线的斜率是,当点趋近于时,函数在处的导数就是切线PT的斜率k,即
导函数:当x变化时,便是x的一个函数,我们称它为的导函数. 的导函数有时也记作,即
二.导数的计算
1若(c为常数),则; 2 若,则;
3 若,则 4 若,则;
5 若,则 6 若,则
7 若,则8 若,则
2)导数的运算法则
1. 2.
3.
3)复合函数求导
和,称则可以表示成为的函数,即为一个复合函数
1.函数的单调性与导数:
一般的,函数的单调性与其导数的正负有如下关系:
在某个区间内,如果,那么函数在这个区间单调递增;
如果,那么函数在这个区间单调递减.
2.函数的极值与导数
求函数的极值的方法是:
如果在附近的左侧,右侧,那么是极大值;
如果在附近的左侧,右侧,那么是极小值;
4.函数的最大(小)值与导数
求函数在上的最大值与最小值的步骤
求函数在内的极值;
将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
第二章 推理与证明
1、归纳推理
把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳).
简言之,归纳推理是由部分到整体、由特殊到一般的推理。
归纳推理的一般步骤:
通过观察个别情况发现某些相同的性质; 从已知的相同性质中推出一个明确表述的一般命题(猜想); 证明(视题目要求,可有可无).
2、类比推理
由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.
类比推理的一般步骤: 找出两类对象之间可以确切表述的相似特征;
用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;
检验猜想。
3、合情推理
归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理.
归纳推理和类比推理统称为合情推理,通俗地说,合情推理是指“合乎情理”的推理.
4、演绎推理
从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.
简言之,演绎推理是由一般到特殊的推理.
演绎推理的一般模式———“三段论”,包括
⑴大前提-----已知的一般原理;
⑵小前提-----所研究的特殊情况;
⑶结论-----据一般原理,对特殊情况做出的判断.
5、直接证明与间接证明
⑴综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.要点:顺推证法;由因导果.
⑵分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.
要点:逆推证法;执果索因.
⑶反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.的证明方法.它是一种间接的证明方法.
反证法法证明一个命题的一般步骤:
(1)(反设)假设命题的结论不成立;
(2)(推理的命题的一种方法.
用数学归纳法证明命题的步骤;
(1)(归纳奠基)证明当取第一个值时命题成立;
(2)(归纳递推)假设时命题成立,推证当时命题也成立.
只要完成了这两个步骤,就可以断定命题对从开始的所有正整数都成立.
经典题例
1已知函数f(x)=(x0).如下定义一列函数:
f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn-1(x)),…,n∈N*,
则函数fn(x)=
2已知数列{an}为等差数列,若am=a,an=b(n-m≥1,m,n∈N*),则am+n=.类比等差数列{an}的上述结论,对于等比数列{bn}(bn0,n∈N*),若bm=c,bn=d(n-m≥2,m,n∈N*),则bm+n=
3已知△ABC的顶点A,B分别是离心率为e的圆锥曲线+=1的焦点,顶点C在该曲线上;一同学已正确地推得:当mn0时有e(sinA+sinB)=sinC.类似地,写出当m0,n0时的结论.
4已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数f(x),求f(x)+的解集为---
5已知函数f(x)=ax+lnx,g(x)=x2-2x+2.若对任意x1∈(0,+∞),存在x2∈[0,1],使得f(x1)g(x2),求a的取值范围.
6若函数f(x)=x(x-c)2在x=2处有极大值,求常数c的值.
7已知函数f(x)的定义域为A,若其
文档评论(0)