- 1、本文档共39页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
双曲线的简单几何性质人教A版选修
焦点在y轴上的双曲线的几何性质口答 双曲线标准方程: 利用x1x20判断点A、B的位置是本题的难点! 讨论直线与双曲线的位置关系,一般化为关于x(或y)的一元二次方程,这时首先要看二次项的系数是否等于0.当二次项系数等于0时,就转化成x(或y)的一元一次方程,只有一个解,这时直线与双曲线相交只有一个交点.当二次项的系数不为0时,利用根的判别式,判断直线与双曲线的位置关系. 变式训练 1.如果直线y=kx-1与双曲线x2-y2=4没有公共点,求k的取值范围. * 复习回顾:双曲线的标准方程: 形式一: (焦点在x轴上,(-c,0)、 (c,0)) 形式二: (焦点在y轴上,(0,-c)、(0,c)) 其中 双曲线的图象特点与几何性质? 现在就用方程来探究一下! 类似于椭圆几何性质的研究. Y X F1 F2 A1 A2 B1 B2 焦点在x轴上的双曲线图像 2、对称性 一、研究双曲线 的简单几何性质 1、范围 关于x轴、y轴和原点都是对称. x轴、y轴是双曲线的对称轴,原点是对称中心, 又叫做双曲线的中心. x y o -a a (-x,-y) (-x,y) (x,y) (x,-y) (下一页)顶点 3、顶点 (1)双曲线与对称轴的交点,叫做双曲线的顶点 x y o -b b -a a 如图,线段 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长. (2) (3)实轴与虚轴等长的双曲线叫等轴双曲线. (下一页)渐近线 4、渐近线 x y o a b 利用渐近线可以较准确的画出双曲线的草图 (2) 渐近线对双曲线的开口的影响 (3) 双曲线上的点与这两直线有什么位置关系呢? (下一页)离心率 如何记忆双曲线的渐近线方程? 5、离心率 e是表示双曲线开口大小的一个量,e 越大开口越大 ca0 e 1 (4)等轴双曲线的离心率e= ? X Y F1 F2 O B1 B2 A2 A1 焦点在y轴上的双曲线图像 Y X 双曲线性质: 1、 范围: y≥a或y≤-a 2、对称性: 关于x轴,y轴,原点对称。 3、顶点 B1(0,-a),B2(0,a) 4、轴:实轴 B1B2 ; 虚轴 A1A2 A1 A2 B1 B2 5、渐近线方程: 6、离心率: e=c/a F2 F2 o 如何记忆双曲线的渐进线方程? 小 结 x y o 或 或 关于坐标 轴和 原点 都对 称 性质 双曲线 范围 对称 性 顶点 渐近 线 离心 率 图象 x y o 例1 求双曲线 9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐进线方程. 可得实半轴长a=4,虚半轴长b=3 焦点坐标为(0,-5)、(0,5) 解:把方程化为标准方程 例2 . 4 5 16 线和焦点坐标 程,并且求出它的渐近 出双曲线的方 轴上,中心在原点,写 焦点在 , ,离心率 离是 已知双曲线顶点间的距 x e = 思考:一个双曲线的渐近线的方程为: ,它的离心率为 . 解: 练习 (1) : (2) : 的渐近线方程为: 的实轴长 虚轴长为_____ 顶点坐标为 ,焦点坐标为_________ 离心率为_______ 4 的渐近线方程为: 的渐近线方程为: 的渐近线方程为: 已知渐近线方程,不能确定a,b的值,只能确定a,b的关系 如果两条渐近线方程为 ,那么双曲线的方程为 当λ 0时, 当λ 0时, 当λ =0时, ,这里λ是待定系数 共轭双曲线:以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线。通过分析曲线的方程,发现二者具有相同的渐近线。此即为共轭之意。 双曲线焦点在x轴上 双曲线焦点
文档评论(0)