- 1、本文档共24页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《数学分析》重积分
曲线积分与曲面积分 第二十一 章重积分§3 格林公式及其应用1 一、区域连通性的分类 二、格林公式 三、简单应用 四、小结 * 设D为平面区域, 如果D内任一闭曲线所围成的部分都属于D, 则称D为平面单连通区域, 否则称为复连通区域. 复连通区域 单连通区域 D D 设空间区域G, 如果G内任一闭曲面所围成的区域全属于G, 则称G是空间二维单连通域; 如果G内任一闭曲线总可以张一片完全属于G的曲面, 则称G为空间一维单连通区域. G G G 一维单连通 二维单连通 一维单连通 二维不连通 一维不连通 二维单连通 定理1 边界曲线L的正向: 当观察者沿边界行走时,区域D总在他的左边. 证明(1) y x o a b D c d A B C E 同理可证 y x o d D c C E 证明(2) D 两式相加得 G D F C E A B 证明(3) 由(2)知 x y o L 1. 简化曲线积分 A B ? 2. 简化二重积分 x y o 解 x y o L y x o x y o (注意格林公式的条件) 3. 计算平面面积 解 * *
文档评论(0)