- 1、本文档共6页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于数学形态学的一种改进CO2焊熔池图像边缘检测算法.doc
基于数学形态学的一种改进CO2焊熔池图像边缘检测算法
摘 要:针对CO2焊熔池图像存在强烈噪声干扰,致使图像处理过程实时性和可靠性差的特点,分析总结了形态学四种基本运算的特性和六种基本形态学边缘检测算子各自的优缺点;然后结合结构元素对于图像边缘检测作用的效果和特性,组合出了一种新型算子;通过Matlab软件仿真结果证明,该算子在抗噪性方面具有较强能力,适合于CO2焊熔池图像的处理,为进一步研究焊缝跟踪问题奠定了基础。
关键词:数学形态学;CO2焊;熔池;边缘检测;Matlab
DOI:10.16640/j.cnki.37-1222/t.2016.24.006
0 引言
具有严谨的数学理论作为基础支撑的数学形态学是一门前沿学科,是一种可用于图像分析和处理的非线性理论。这种理论方法的思想创新在于抛弃了传统的通过建立数值模型对图像进行分析的方法,从数学集合的层面来研究分析以及处理图像。基于数学形态学的图像处理方法已经成为计算机数字图像处理领域的一个重要研究方向[1,2]。目前焊接视觉信息控制系统主要集中于TIG焊、MIG焊、脉冲GTAW焊等焊接过程,但作为“十五”重点推广的高效率、低成本、节省能源的应用面极其广泛的CO2气保焊却少有报道[3,4]。这是因为这种焊接方法会因为熔滴爆断和电弧燃烧产生大量金属飞溅和烟尘,且弧柱燃烧产生的烟尘也会使所获图像变得更加模糊,因此一般的图像处理方法很难应用于CO2气保焊的熔池图像处理过程[4],致使基于视觉的CO2焊焊缝跟踪技术受到严重制约。
1 数学形态学的图像处理基本运算
1.1 膨胀和腐蚀
设P为待处理图像,Q为结构元素,且P和Q都是由二维整数空间(R2)里的元素组成的集合。图像P被结构元素Q膨胀,定义为:
(1)
膨胀是一种扩充变换,可使得整幅图像的灰度值提高,等同于对待处理区域的外部做滤波处理,作用结果是填补比结构元素尺寸稍小的小孔,并修复图像边缘存在的毛刺之间的小的凹陷区域,同时将距离小于结构元素尺寸的两物体连接起来[5]。
P用Q来腐蚀,定义如下:
(2)
腐蚀是一种紧缩变换,等同于对待处理区域的内部做滤波处理,该变换可以消除比结构元素尺寸小的边界点,同时起到去除比结构元素尺寸小的噪声点和填补图像内部的小孔洞的作用[5]。
1.2 开运算和闭运算
对待处理图像进行先腐蚀后膨胀的操作称为开运算。P用Q进行开运算定义如下:
(3)
它可以对待处理图像的内部进行滤波,滤除正脉冲噪声。可以在并不明显改变待处理区域的面积的同时用来消除较小的物体对象如孤立点和小毛刺,此外还可以平滑较大物体的边界、在细小点处分割物体,并且去掉了凸角。
对待处理图像进行先膨胀后腐蚀的操作称为闭运算。P用Q进行闭运算定义如下:
(4)
它可以对待处理图像的外部进行滤波,滤除负脉冲噪声。具有填充图像待处理区域物体内部细小的孔洞和图像的凹陷处、把狭小的缺口连接成纤细的弯口、可以起到在保证待处理区域形状和面积大体不变的情况下平滑其边界的作用。
1.3 六种基本形态学算子
形态学边缘检测的基本思想是:如果在待处理图像中的某一点邻域内梯度变化剧烈,则代表在该点附近图像的灰暗程度变化迅速,也就意味着可能是有图像边缘通过,一般地,这些梯度算子用差分运算的形式给出。综合考虑膨胀、腐蚀、开、闭运算的定义及其相关的扩充和紧缩特性,可得以下不等式:
根据以上各算子的运算组成可以知道膨胀型边缘检测算子提取的是待处理图像的外部边缘,腐蚀型提取的是待处理图像的内部边缘,膨胀腐蚀型边缘检测算子提取的是横跨在实际图像边界上的比实际边界要宽的边缘,这三类形态学边缘检测算子对噪声干扰较为敏感,抗噪声能力较差;开运算型可以检测出图像中的波峰,闭运算型可以检测出图像中的波谷,而开闭运算型虽然可以一次同时检测出图像中的波峰和波谷信息,但会存在较大的检测误差。这三类形态学边缘检测算子由其组合方式决定了它的抗噪性能要优于上面三类,但检测结果存在一定的图像偏移情况,边缘检测精度不高。图1是六种基本的形态学边缘检测算子提取的含有强烈噪声干扰的原始熔池图像边缘。
2 新型形态学边缘检测算子
根据基于数学形态学的图像边缘检测的基本思想可以发现,只有当数学形态学边缘检测算子的结构元素的尺寸大于或等于噪声点的尺寸,才能使得数学形态边缘检测算子具有一定的去噪能力。在图像处理的实际应用中,大尺寸的结构元素具有较强的去噪能力,但是待处理图像中的一些小于结构元素尺寸的有用的细节却被当作噪声过滤掉了。小尺寸的结构元素,明显不容易滤除待处理图像中的噪声点,但益处是不会把待处理图像中的有用的小细节当作噪声点滤除掉。
鉴于此,拟
文档评论(0)