- 1、本文档共10页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Large Margin Distribution Machine
Teng Zhang and Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology Nanjing University, Nanjing 210023, China
{zhangt, zhouzh}@
ABSTRACT
Support vector machine (SVM) has been one of the most popular learning algorithms, with the central idea of maximizing the minimum margin, i.e., the smallest distance from the instances to the classi?cation boundary. Recent theoretical results, however, disclosed that maximizing the minimum margin does not necessarily lead to better generalization performances, and instead, the margin distribution has been proven to be more crucial. In this paper, we propose the Large margin Distribution Machine (LDM), which tries to achieve a better generalization performance by optimizing the margin distribution. We characterize the margin distribution by the ?rst- and second-order statistics, i.e., the margin mean and variance. The LDM is a general learning approach which can be used in any place where SVM can be applied, and its superiority is veri?ed both theoretically and empirically in this paper.
Categories and Subject Descriptors
I.2.6 [Arti?cial Intelligence]: Learning; I.5.2 [Pattern Recognition]: Design Methodology—classi?er design and evaluation; H.2.8 [Database Management]: Database Applications—Data mining
Keywords
Margin distribution; minimum margin; classi?cation
1. INTRODUCTION
Support Vector Machine (SVM) [5, 26] has always been one of the most successful learning algorithms. The basic idea is to identify a classi?cation boundary having a large margin for all the training examples, and the resultant optimization can be accomplished by a quadratic programming (QP) problem. Although SVMs have a long history of literatures, there are still great e?orts [16, 6, 25, 14, 8] on improving SVMs.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for pro?t or commercial adv
您可能关注的文档
- 《高中英语课件》Cultural corner.ppt
- 《高中英语课件》M1 B3 reading.ppt
- 《高中英语课件》M3 B1 reading.ppt
- 《高中英语课件》M3 B1单词讲解.ppt
- 《高中英语课件》M3 B3 课文讲解.ppt
- 《高中英语课件》M3B4new words.ppt
- 《高中英语课件》M3B4readind and corner.ppt
- 《高中英语课件》M4B4 word study.ppt
- 《高中英语课件》m4B4Cultural corner.ppt
- 《高中英语课件》M4book1(wen).ppt
- 第18讲 第17课 西晋的短暂统一和北方各族的内迁.docx
- 第15讲 第14课 沟通中外文明的“丝绸之路”.docx
- 第13课时 中东 欧洲西部.doc
- 第17讲 第16 课三国鼎立.docx
- 第17讲 第16课 三国鼎立 带解析.docx
- 2024_2025年新教材高中历史课时检测9近代西方的法律与教化含解析新人教版选择性必修1.doc
- 2024_2025学年高二数学下学期期末备考试卷文含解析.docx
- 山西版2024高考政治一轮复习第二单元生产劳动与经营第5课时企业与劳动者教案.docx
- 第16讲 第15课 两汉的科技和文化 带解析.docx
- 第13课 宋元时期的科技与中外交通.docx
文档评论(0)