《海量数据挖掘-王永利》ch10-graphs1.pptVIP

《海量数据挖掘-王永利》ch10-graphs1.ppt

  1. 1、本文档共64页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Approximates the optimal cut [Shi-Malik, ’00] Can be used to approximate optimal k-way normalized cut Emphasizes cohesive clusters Increases the unevenness in the distribution of the data Associations between similar points are amplified, associations between dissimilar points are attenuated The data begins to “approximate a clustering” Well-separated space Transforms data to a new “embedded space”, consisting of k orthogonal basis vectors Multiple eigenvectors prevent instability due to information loss J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, * Searching for small communities in the Web graph What is the signature of a community / discussion in a Web graph? [Kumar et al. ‘99] Dense 2-layer graph Intuition: Many people all talking about the same things … … … Use this to define “topics”: What the same people on the left talk about on the right Remember HITS! J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, * A more well-defined problem: Enumerate complete bipartite subgraphs Ks,t Where Ks,t : s nodes on the “left” where each links to the same t other nodes on the “right” K3,4 |X| = s = 3 |Y| = t = 4 X Y Fully connected J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, * Market basket analysis. Setting: Market: Universe U of n items Baskets: m subsets of U: S1, S2, …, Sm ? U (Si is a set of items one person bought) Support: Frequency threshold f Goal: Find all subsets T s.t. T ? Si of at least f sets Si (items in T were bought together at least f times) What’s the connection between the itemsets and complete bipartite graphs? [Agrawal-Srikant ‘99] J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, * [Kumar et al. ‘99] i b c d a Si={a,b,c,d} j i k b c d a X Y s … minimum support (|X|=s) t … itemset size (|Y|=t) J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, * [Kumar et al. ‘99] i b c d a Si={a,b,c,d} x y z b c a X Y Find frequent itemsets: s … minimum suppor

文档评论(0)

1243595614 + 关注
实名认证
文档贡献者

文档有任何问题,请私信留言,会第一时间解决。

版权声明书
用户编号:7043023136000000

1亿VIP精品文档

相关文档