《海量数据挖掘-王永利》ch09-recsys1.pptVIP

《海量数据挖掘-王永利》ch09-recsys1.ppt

  1. 1、本文档共43页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
* * * * * * * -- Jaccard is not appropriate as we want to consider weights * * * There is a difference in the typical behavior of users and items, as it pertains to similarity. Intuitively, items tend to be classifiable in simple terms. For example, music tends to belong to a single genre. It is impossi- ble, e.g., for a piece of music to be both 60’s rock and 1700’s baroque. On the other hand, there are individuals who like both 60’s rock and 1700’s baroque, and who buy examples of both types of music. The consequence is that it is easier to discover items that are similar because they belong to the same genre, than it is to detect that two users are similar because they prefer one genre in common, while each also likes some genres that the other doesn’t care for. * * * * * * J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, * rx = [*, _, _, *, ***] ry = [*, _, **, **, _] rx, ry as sets: rx = {1, 4, 5} ry = {1, 3, 4} rx, ry as points: rx = {1, 0, 0, 1, 3} ry = {1, 0, 2, 2, 0} rx, ry … avg. rating of x, y Intuitively we want: sim(A, B) sim(A, C) Jaccard similarity: 1/5 2/4 Cosine similarity: 0.386 0.322 Considers missing ratings as “negative” Solution: subtract the (row) mean J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, * sim A,B vs. A,C: 0.092 -0.559 Notice cosine sim. is correlation when data is centered at 0 Cosine sim: * J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, So far: User-user collaborative filtering Another view: Item-item For item i, find other similar items Estimate rating for item i based on ratings for similar items Can use same similarity metrics and prediction functions as in user-user model J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, * sij… similarity of items i and j rxj…rating of user u on item j N(i;x)… set items rated by x similar to i 12 11 10 9 8 7 6 5 4 3 2 1 4 5 5 3 1 1 3 1 2 4 4 5 2 5 3 4 3 2 1 4 2 3 2 4 5 4 2 4 5 2 2 4 3 4 5 4 2 3 3 1 6 users movi

文档评论(0)

1243595614 + 关注
实名认证
文档贡献者

文档有任何问题,请私信留言,会第一时间解决。

版权声明书
用户编号:7043023136000000

1亿VIP精品文档

相关文档