基于稀疏优化算法的视频运动分割.docVIP

基于稀疏优化算法的视频运动分割.doc

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于稀疏优化算法的视频运动分割.doc

基于稀疏优化算法的视频运动分割   摘要:该文提出一种基于子空间模型分割视频中多个运动目标的方法。实际视频序列中提取的特征点是复杂的高维数据,本文结合现有文献,首次提出使用稀疏主成分分析(SPCA)算法降维,将原始高维数据投影到一个具有稀疏表示的低维空间,在此基础上,提出基于特征角的“稀疏近邻”估计方法得到相似度矩阵,从而获得最终的子空间聚类结果。将该文提出的方法应用到视频序列中,并与现有的运动分割的算法进行比较。实验结果表明,本文提出的方法可以准确对视频中不同运动的物体进行分类,并在精度和运算速度方面与其他算法相比都有很大的提高。   关键词:视频分割;稀疏优化;子空间模型   中图分类号:TP302 文献标识码:A 文章编号:1009-3044(2016)27-0139-05   1 介绍   视频的运动分割,旨在从视频序列中分解出多个连续移动的不同物体。将不同运动物体的信息从视频中提取出来之后,可以做很多后续的研究,如异常行为分析或者运动物体的追踪。近几年,基于特征点轨迹聚类的视频运动分割问题是主要的研究方向,首先对提取的实际视频序列进行预处理获得特征点轨迹,如KLT[1],SIFT[2]或者SURF[3]等特征点提取算法,基于不同的运动目标对特征点轨迹集合进行聚类。但是长视频序列中提取和跟踪的特征点集合往往是高维复杂的大数据,需要寻求一种高精度并能快速对高维复杂数据进行分类的方法。基于子空间模型下的运动分割,是现如今被普遍研究的分类方法。子空间模型下分类的基本思想是,从视频序列中提取到的每一组特征点轨迹都认为其点集合共同构建了一个子空间,那么不同特征点集合的聚类问题,即转化为对一组子空间集合进行聚类的问题。   本文基于LSA聚类算法[7]以及稀疏子空间聚类算法(SSC)[6]的思想,提出一种基于稀疏优化对子空间进行聚类的新方法。实验结果表示,本文所提出的方法,可以有效且快速地分类实际视频中的不同运动目标。   2 基于子空间模型下的运动分割   2.1 子空间聚类模型   对特征点集合组成的高维数据聚类,基于子空间的模型,首先需要获得高维数据的低维表示,而这个低维表示能够保持原大数据矩阵的本质特征。假设,将原高维数据的低维投影看作一个变换后的“全局子空间”,而全局子空间是由不同的更低维度的“本地子空间”相互交叠构成,如图1,三种数据点集合构成三种子空间S1,S2,S3,集合S={ S1,S2,S3}称作全局子空间,S1,S2,S3相对的称作本地子空间。本文中基于子空间模型进行分类的基本思想就是从全局子空间中找出不同的本地子空间,属于同一本地子空间的数据应当被划分到同一类中,即划分为属于同一种运动目标。   4 实验结果与分析   本文实验数据选自标准的视频数据库Hopkins 155数据集[13]。并将本文提出的优化算法与现今其他优秀的运动分割算法进行比较,在分割的过程中,假设所有视频中运动目标的个数已知。   图6,7,8是采用本文所提出算法进行聚类的结果,不同颜色代表不同的运动目标。图6中包含3中运动,红色点代表背景,蓝色和绿色代表两种汽车的运动,图7中包含2种运动,人的手臂以及手上拿的物体分别用红色和绿色进行区分,图8代表了3种物体的运动,红色点代表背景,由图7可知,对于特征点多且复杂的难以区分运动模式,我们所提出的算法可以有效的对不同的运动目标进行区分。为了进一步表明本文所提出算法的优势,我们将从错误率和运算时间与SSC [6], LSA [7], RANSAC [4], GPCA [5], LLMC [14]算法进行对比。   从表1、2、3、4可以得出,我们所提出的算法具有比较好的准确度,虽然相比SSC算法来说准确度略低,但是我们的优化算法与SSC相比加快了运算的速度。   5 总结   本文提出了一种基于子空间的运动分割优化方法,可以对实际视频序列中不同的运动物体进行有效分类。首先通过SPCA算法[15]将高维数据投影在一个低维的空间上,并且具有少数的非零元素;基于SMCE [9]的思想,对投影后低维空间中不同的子空间进行估计,寻找在低维空间中每一个数据点的稀疏近邻(隶属于同一子空间),将投影后分布于低维空间中的不同子空间分割出来,这种方式相比较LSA算法来说,改善了过度估计和不同子空间相互交叉的问题,大大提高了准确率。与SSC算法相比,运算时间得到提升。在未来的研究中,将对长视频序列中运动目标分割的研究作为主要方向,并侧重数据缺失或不完整轨迹等问题,进一步提升算法的准确性和实用性。   参考文献:   [1] Tomasi C, Kanade T. Detection and tracking of point features. School of Comp

文档评论(0)

yingzhiguo + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:5243141323000000

1亿VIP精品文档

相关文档