基于协整回归模型的农业经济运行过程监控.docVIP

基于协整回归模型的农业经济运行过程监控.doc

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于协整回归模型的农业经济运行过程监控.doc

基于协整回归模型的农业经济运行过程监控   摘要:针对包含多个非平稳时序数据的经济系统,提出基于协整回归模型进行控制图的应用。以农业经济运行质量的过程监控为例,确定农业经济系统中农业总产出与各生产要素序列的协整关系后,进行协整回归模型的构建,通过控制图对协整回归模型的残差序列的过程监控,此过程受控时计算的农业科技进步贡献率更具说服力。   关键词:非平稳性;协整回归模型;自相关控制图;农业经济运行质量   中图分类号:F064.1 文献标识码:A 文章编号:0439-8114(2015)24-6407-04   DOI:10.14088/j.cnki.issn0439-8114.2015.24.81   Abstract: According to the economic system with multiple non-stationary time series data, the application of the control chart was put forward based on the co-integration regression model. Taking the process control of the running quality of agricultural economy as an example, after determining the co-integration relationship between agricultural total output and each sequence of production factor in agricultural economic system, the co-integration regression model was constructed, then the control chart was applied to monitor the residual sequence process based on the co-integration regressive model. Results showed that when the process is in control, the progress contribution rate of agriculture technology obtained is more persuasive.   Key words:non-stationary;co-integration regressive model;autoregressive control chart;running quality of agricultural economy   由张公绪[1]提出的选控图主要用来解决连续工业过程的统计质量控制问题。该图的设计根据非控系统中因素的多少分为两类,即单因素控制图和多因素控制图。其中多因素控制图采用多元线性回归模型进行数据拟合后,再利用最小二乘法(LS)估计模型参数,因此该类控制图也称为回归控制图[2]。通常连续工业工程的数据被认为是具有平稳性的,所以基于一般回归模型的控制图设计是合理的。但经济金融过程产生的数据确大多呈现出显著的非平稳特性,若仍继续沿用经典回归模型拟合数据,则会导致虚假回归(即“伪回归”)问题的产生,基于该类模型进行回归控制图的设计及应用,显然是不合理的。差分法是用来克服“伪回归”的常用方法,即通过差分运算将非平稳序列转化为平稳或近似平稳序列,但该做法过程中出现的多变量间长期关系的信息缺失比较严重。实际上虽然数据序列自身的变化是非平稳的,但多个序列间却存在非常密切的长期均衡关系,Engle等[3]提出了协整(Co-integration)理论,该理论可有效衡量序列间是否存在这种关系。由协整理论可知,如果两个或更多序列变量具有相同的单整阶数,且它们之间存在协整关系即存在长期均衡关系,则序列残差平稳,从而避免了“伪回归”问题。   改革开放30多年来,中国农村经济迅速发展,农村产业结构日趋完善,农民收入水平、生活条件均得到明显提高和改善。农业科技进步与创新作为农业经济增长的原动力,更是保证农业经济良性发展的必要条件。农业科技进步贡献率的合理有效测定,不仅对总体把握中国农业科技进步水平有利,同时对于提高农业经济运行过程的质量具有重要的参考价值。对科技进步与经济增长关系的深入系统研究国内起步于上世纪80 年代,学者研究的焦点多集中在科技进步对经济增长的贡献份额的测算上,对农业科技进步贡献率的测算较少且研究方法也相对单一[4,5]。农业科技进步贡献率的测算方法多以C-D 生产函数[6-8]和索洛余值法为主[9

文档评论(0)

yingzhiguo + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:5243141323000000

1亿VIP精品文档

相关文档