- 1、本文档共73页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
数理金融学组合投资理论
投资学 第5章 数理金融学 第2章 组合投资理论 2.1 资产组合的收益与风险 一个岛国是旅游胜地,其有两家上市公司,一家为防晒品公司,一家为雨具公司。岛国每年天气或为雨季或为旱季,概率各为0.5,两家公司在不同天气下的收益分别如下,请问你的投资策略。 资产组合(Portfolio)的优点 对冲(hedging),也称为套期保值。投资于补偿形式(收益负相关),使之相互抵消风险的作用。 分散化(Diversification):必要条件收益是不完全正相关,就能降低风险。 组合使投资者选择余地扩大。 例如有A、B两种股票,每种股票的涨或跌的概率都为50%,若只买其中一种,则就只有两种可能,但是若买两种就形成一个组合,这个组合中收益的情况就至少有六种。 组合的收益 假设组合的收益为rp,组合中包含n种证券,每种证券的收益为ri,它在组合中的权重是wi,则组合的投资收益为 根据概率论,对于任意的两个随机变量,总有下列等式成立 总结 对于包含n个资产的组合p,其总收益的期望值和方差分别为 例 题 例1:假设两个资产收益率的均值为0.12,0.15,其标准差为0.20和0.18,占组合的投资比例分别是0.25和0.75,两个资产协方差为0.01,则组合收益的期望值的方差为 例2:假设某组合包含n种股票。投资者等额地将资金分配在上面,即每种股票占总投资的1/n,每种股票的收益也是占总收益的1/n。设若投资一种股票,其期望收益为r,方差为σ2,且这些股票之间两两不相关,求组合的收益与方差。 组合的收益是各种证券收益的加权平均值,因此,它使组合的收益可能低于组合中收益最大的证券,而高于收益最小的证券。 只要组合中的资产两两不完全正相关,则组合的风险就可以得到降低。 只有当组合中的各个资产是相互独立的且其收益和风险相同,则随着组合的风险降低的同时,组合的收益等于各个资产的收益。 2.2 组合投资理论概述 现代投资理论的产生以1952年3月Harry.M.Markowitz发表的《投资组合选择》为标志 1962年,Willian Sharpe对资产组合模型进行简化,提出了资本资产定价模型(Capital asset pricing model, CAPM) 1976年,Stephen Ross提出了替代CAPM的套利定价模型(Arbitrage pricing theory,APT)。 上述的几个理论均假设市场是有效的。人们对市场能够地按照定价理论的问题也发生了兴趣,1965年,Eugene Fama在其博士论文中提出了有效市场假说(Efficient market hypothesis,EMH) 2.3 资产组合投资理论 基本假设 (1)投资者仅仅以期望收益率和方差(标准差)来评价资产组合(Portfolio) (2)投资者是不知足的和风险厌恶的,即投资者是理性的。 (3)投资者的投资为单一投资期,多期投资是单期投资的不断重复。 (4)投资者希望持有有效资产组合。 2.3.1 组合的可行集和有效集 可行集与有效集 可行集:资产组合的机会集合(Portfolio opportunity set),即资产可构造出的所有组合的期望收益和方差。 有效组合(Efficient portfolio ):给定风险水平下的具有最高收益的组合或者给定收益水平下具有最小风险的组合。每一个组合代表一个点。 有效集( Efficient set) :又称为有效边界( Efficient frontier),它是有效组合的集合(点的连线)。 两种风险资产构成的组合的风险与收益 若已知两种资产的期望收益、方差和它们之间的相关系数,则由上一章的结论可知两种资产构成的组合之期望收益和方差为 注意到两种资产的相关系数为1≥ρ12≥-1 因此,分别在ρ12=1和ρ12=-1时,可以得到资产组合的可行集的顶部边界和底部边界。 其他所有的可能情况,在这两个边界之中。 组合的风险-收益二维表示 两种资产完全正相关,即ρ12 =1,则有 命题2.1:完全正相关的两种资产构成的可行集是一条直线。 证明:由资产组合的计算公式可得 两种资产组合(完全正相关),当权重w1从1减少到0时可以得到一条直线,该直线就构成了两种资产完全正相关的可行集(假定不允许买空卖空)。 2.3.3 两种完全负相关资产的可行集 两种资产完全负相关,即ρ12 =-1,则有 命题2.2:完全负相关的两种资产构成的可行集是两条直线,其截距相同,斜率异号。证明: 两种证券完全负相关的图示 2.3.4 两种不完全相关的风险资产的组合的可行集 总结:在各种相关系数下、两种风险资产构成的可行集 3种风险资产的组合二维表示 一般地,当资产数量增加时,要保
文档评论(0)