Web Mining(网路探勘).ppt

  1. 1、本文档共55页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Web Mining(网路探勘).ppt

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Concurrency A crawler incurs several delays: Resolving the host name in the URL to an IP address using DNS Connecting a socket to the server and sending the request Receiving the requested page in response Solution: Overlap the above delays by fetching many pages concurrently Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data * Architecture of a concurrent crawler Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data * Concurrent crawlers Can use multi-processing or multi-threading Each process or thread works like a sequential crawler, except they share data structures: frontier and repository Shared data structures must be synchronized (locked for concurrent writes) Speedup of factor of 5-10 are easy this way Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data * Universal crawlers Support universal search engines Large-scale Huge cost (network bandwidth) of crawl is amortized over many queries from users Incremental updates to existing index and other data repositories Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data * Large-scale universal crawlers Two major issues: Performance Need to scale up to billions of pages Policy Need to trade-off coverage, freshness, and bias (e.g. toward “important” pages) Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data * Large-scale crawlers: scalability Need to minimize overhead of DNS lookups Need to optimize utilization of network bandwidth and disk throughput (I/O is bottleneck) Use asynchronous sockets Multi-processing or multi-threading do not scale up to billions of pages Non-blocking: hundreds of network connections open simultaneously Polling socket to monitor completion of network transfers Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Con

文档评论(0)

lmother_lt + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档