DataminingConceptsandteniques0.ppt

  1. 1、本文档共94页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
DataminingConceptsandteniques0

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * What Is the Problem with PAM? Pam is more robust than k-means in the presence of noise and outliers because a medoid is less influenced by outliers or other extreme values than a mean Pam works efficiently for small data sets but does not scale well for large data sets. O(k(n-k)2 ) for each iteration where n is # of data,k is # of clusters Sampling-based method CLARA(Clustering LARge Applications) * CLARA (Clustering Large Applications) (1990) CLARA (Kaufmann and Rousseeuw in 1990) Built in statistical analysis packages, such as SPlus It draws multiple samples of the data set, applies PAM on each sample, and gives the best clustering as the output Strength: deals with larger data sets than PAM Weakness: Efficiency depends on the sample size A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased * CLARANS (“Randomized” CLARA) (1994) CLARANS (A Clustering Algorithm based on Randomized Search) (Ng and Han’94) Draws sample of neighbors dynamically The clustering process can be presented as searching a graph where every node is a potential solution, that is, a set of k medoids If the local optimum is found, it starts with new randomly selected node in search for a new local optimum Advantages: More efficient and scalable than both PAM and CLARA Further improvement: Focusing techniques and spatial access structures (Ester et al.’95) * ROCK: Clustering Categorical Data ROCK: RObust Clustering using linKs S. Guha, R. Rastogi K. Shim, ICDE’99 Major ideas Use links to measure similarity/proximity Not distance-based Algorithm: sampling-based clustering Draw random sample Cluster with links Label data in disk Experiments Congressional voting, mushroom data * Similarity Measure in ROCK Traditional measures for categorical data may not work well, e.g., Jaccard coefficient Example: Two gro

文档评论(0)

shenland + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档