聚合物结构与性能.doc

  1. 1、本文档共4页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
聚合物结构与性能

一、 聚合物分子(高聚物分子,通常简称为高分子):(1)这些部分是由相对低分子质量的分子衍生的单元(所谓的单体单元或链节) (2)并且只有一种或少数几种链节(3)这些需要的链节多重重复重现。 长周期:在纤维轴方向片晶和非晶能重复出现的最短距离,即片晶和非晶的平均厚度之和 缚结分子:连结至少两个晶体的分子。 初期结晶: 预先成核:晶核预先存在,成核速率与时间无关。 二、 1、微构象与宏构象 微构象:分子中的一小部分由于一个或数个键的内旋转所引起的构象。 2、玻璃化转变温度与熔融温度 玻璃化转变温度:非晶态聚合物或部分结晶聚合物中非晶相发生玻璃化转变所对应的温度。 晶体物质由固态向液态转变时固液两相共存的温度。 应力:受力物体截面上内力的集度,即单位面积上的内力 应变:物体内任一点因各种作用引起的相对变形。 质量结晶度:X-射线被高聚物中原子散射的强度与原子所处的状态无关,原子的聚集状态只决定衍射线的位置与形状,不影响总强度。因此可以认为非晶部分的质量与结晶部分的质量之比,等于非晶部分的衍射强度与结晶部分的衍射强度之比。即()。理论上,只要知道晶区和非晶区衍射的X射线的总强度,就可计算结晶度。在实际工作中,只能在一定的角度范围收集衍射强度数据,无法收集到样品衍射或散射X射线的总强度。 这样,在所收集的数据中,晶区或非晶区对衍射强度的贡献可能偏高或偏低。所以,应加入比例常数 即,,式中, K为比例常数。 体积结晶度: 用X-射线衍射法体积结晶度。根据微原纤结构模型即可测得结晶度 式中,D为晶片厚度,L为长周期。 三、 在正交偏光显微镜下,球晶呈现特有的黑十字消光图像及明暗相间的消光环,其中黑十字消光图像反映的是球晶中晶片的径向生长,消光环反映的是球晶中晶片的扭曲生长。 四、什么是超分子结构?超分子结构参数有哪些?用简述或图示法说明用X-射线图确定超分子结构参数的基本依据。 答:超分子结构:高分子链之间通过强的或弱的相互作用所形成的聚集体。 结构参数 2. 取向度3 .晶粒尺寸 4.长周期 X- 假设:X-射线被高聚物中原子散射的强度与原子所处的状态无关,原子的聚集状态只决定衍射线的位置与形状,不影响总强度。因此可以认为非晶部分的质量与结晶部分的质量之比,等于非晶部分的衍射强度与结晶部分的衍射强度之比。 理论上,只要知道晶区和非晶区衍射的X射线的总强度,就可根据上式计算结晶度。在实际工作中,只能在一定的角度范围收集衍射强度数据,无法收集到样品衍射或散射X射线的总强度。 这样,在所收集的数据中,晶区或非晶区对衍射强度的贡献可能偏高或偏低。所以,应在上式中加入比例常数 式中, K为比例常数。晶区的衍射强度Ic和非晶区的散射强度Ia则表示在一定角度范围内收集到的X射线衍射的积分强度。 对有些高聚物,晶区和非晶区对衍射强度的贡献集中在一定的角度范围内,可近似取K值为1。为计算方便,有时用衍射峰的面积代替积分强度。 主要计算方法有:作图法,Ruland法(考虑晶格畸变的影响),拟合分峰法(Hindeleh), (1) 晶峰和非晶峰可以分开的样品 (作图法) (2) 非晶峰和晶峰重叠的样品 (Hindeleh, Farrow, Ruland, 体积结晶度: 用X-射线衍射法体积结晶度。根据微原纤结构模型: 式中,D为晶片厚度,L为长周期。 五、 答、随着受热温度的增加,结晶高聚物可能发生的热转变有:玻璃化转变,对应的温度名称为玻璃化温度Tg;熔融,对应的温度名称为熔点m;最后到达向粘流态转变,对应的温度名称为粘流温度TfTg-Tm之间并不出现高弹态,只有达到熔点Tm,结晶瓦解,链段热运动程度迅速增加,模量才迅速下降。为什么PE能制成高强高模纤维就是这个道理。若高聚物分子量较高TmTf,则在Tm与Tf之间可以出现高弹态;若高聚物分子量较低,则TmTf,大分子晶体熔融后直接变成粘流态。 六、绘出玻璃态聚合物纤维在单轴拉伸时的应力 – 应变曲线,并指出从应力应变曲线可获得的参数 σb断裂强度,σy屈服强度,εb断裂伸长率,εy屈服伸长率。 七、 1)化学结构的影响:①链结构。提高化学结构的规整性,使之具有结晶性,引入交联键或增加分子链的刚性均有利于提高材料的强度。②分子量。随着分子量的增大,强度增加,但当分子量相当大时,强度与分子量几乎无关。③交联的影响,通过化学交联,物体形成坚硬网络结构,有利于提高材料的强度。材料的强度不只受交联密度的影响,主要还取决于分子间作用力和结果的均匀性。④分子间作用力的影响,分子间作用力愈强(极性基团),高聚物的强度也愈高。 2)超分子结构影响:①单位立方体模型的影响,在串联模型中,两相的应力相等,应变为两相应变之和,在并联模型中,两相的应变相等,应力为

文档评论(0)

juhui05 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档