经验分享,使用eviews做回归分析.docx

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
经验分享,使用eviews做回归分析

[经验分享] 使用eviews做线性回归分析Glossary: ls(least squares)最小二乘法 R-sequared样本决定系数(R2):值为0-1,越接近1表示拟合越好,0.8认为可以接受,但是R2随因变量的增多而增大,解决这个问题使用来调整 Adjust R-seqaured() S.E of regression回归标准误差 Log likelihood对数似然比:残差越小,L值越大,越大说明模型越正确 Durbin-Watson stat:DW统计量,0-4之间 Mean dependent var因变量的均值 S.D. dependent var因变量的标准差 Akaike info criterion赤池信息量(AIC)(越小说明模型越精确) Schwarz ctiterion:施瓦兹信息量(SC)(越小说明模型越精确) Prob(F-statistic)相伴概率 fitted(拟合值) 线性回归的基本假设: 1.自变量之间不相关 2.随机误差相互独立,且服从期望为0,标准差为σ的正态分布 3.样本个数多于参数个数 建模方法: ls y c x1 x2 x3 ... x1 x2 x3的选择先做各序列之间的简单相关系数计算,选择同因变量相关系数大而自变量相关系数小的一些变量。模型的实际业务含义也有指导意义,比如m1同gdp肯定是相关的。 模型的建立是简单的,复杂的是模型的检验、评价和之后的调整、择优。 模型检验: 1)方程显著性检验(F检验):模型拟合样本的效果,即选择的所有自变量对因变量的解释力度 F大于临界值则说明拒绝0假设。 Eviews给出了拒绝0假设(所有系统为0的假设)犯错误(第一类错误或α错误)的概率(收尾概率或相伴概率)p值,若p小于置信度(如0.05)则可以拒绝0假设,即认为方程显著性明显。 2)回归系数显著性检验(t检验):检验每一个自变量的合理性 |t|大于临界值表示可拒绝系数为0的假设,即系数合理。t分布的自由度为n-p-1,n为样本数,p为系数位置 3)DW检验:检验残差序列的自相关性,检验基本假设2(随机误差相互独立) 残差:模型计算值与资料实测值之差为残差 0=dw=dl 残差序列正相关,dudw4-du 无自相关, 4-dldw=4负相关 ,若不在以上3个区间则检验失败,无法判断 demo中的dw=0.141430 ,dl=1.73369,du=1.7786,所以存在正相关 模型评价 目的:不同模型中择优 1)样本决定系数R-squared及修正的R-squared R-squared=SSR/SST 表示总离差平方和中由回归方程可以解释部分的比例,比例越大说明回归方程可以解释的部分越多。 Adjust R-seqaured=1-(n-1)/(n-k)(1-R2) 2)对数似然值(Log Likelihood,简记为L) 残差越小,L越大 3)AIC准则 AIC= -2L/n+2k/n, 其中L为 log likelihood,n为样本总量,k为参数个数。 AIC可认为是反向修正的L,AIC越小说明模型越精确。 4)SC准则 SC= -2L/n + k*ln(n)/n 用法同AIC非常接近 预测forecast root mean sequared error(RMSE)均方根误差 Mean Absolute Error(MAE)平均绝对误差 这两个变量取决于因变量的绝对值, MAPE(Mean Abs. Percent Error)平均绝对百分误差,一般的认为MAPE10则认为预测精度较高 Theil Inequality Coefficient(希尔不等系数)值为0-1,越小表示拟合值和真实值差异越小。 偏差率(bias Proportion),bp,反映预测值和真实值均值间的差异 方差率(variance Proportion),vp,反映预测值和真实值标准差的差异 协变率(covariance Proportion),cp,反映了剩余的误差 以上三项相加等于1。 预测比较理想是bp,vp比较小,值集中在cp上。 eviews不能直接计算出预测值的置信区间,需要通过置信区间的上下限公式来计算。如何操作? 其他 1)Chow检验 chows breakpoint检验 零假设是:两个子样本拟合的方程无显著差异。有差异则说明关系中结构发生改变 demo中 Chow Breakpoint Test: 1977Q1 F-statistic 2.95511837136742 Prob. F(3,174) 0.0339915698953355 Log likelihood ratio 8.945079

文档评论(0)

wj38429 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档