- 1、本文档共7页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
高二数学周末习练12
高二数学周末练习(12)
班级: 姓名: 座号:
选择题
1.设A(a,1),B(2,b),C(4,5),为坐标平面上三点,O为坐标原点,若与在方向上 的投影相同,则a与b满足的关系式为( )
A.4a-5b=3 B.5a-4b=3 C.4a+5b=14 D.5a+4b=14
2.已知|a|=1,|b|=6,a·(b-a)=2,则向量a与b的夹角是( )
A. B. C. D.
3.若点M为△ABC的重心,则下列各向量中与共线的是( )
A.++ B.++ C.++ D.3+
4.已知|a|=2|b|≠0,且关于x的方程x2+|a|x+a·b=0有实根,则a与b的夹角的取值范围是( )
A.[0,] B.[,π] C.[,] D.[,π]
5.设向量a,b满足:|a|=3,|b|=4,a·b=0.以a,b,a-b的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )
A.3 B.4 C.5 D.6
6.设两个向量a=(λ+2,λ2-cos2α)和b=(m,+sinα),其中λ,m,α为实数,若a=2b,则的取值范围是( )
A.[-6,1] B.[4,8] C.(-∞,-1] D.[-1,6]
7.设向量a,b满足|a|=|b|=1,a·b=-,则|a+2b|=( )
A. B. C. D.
8.设平面向量a1,a2,a3的和a1+a2+a3=0.如果平面向量b1,b2,b3满足|bi|=2|ai|,且ai顺时针旋转30°后与bi同向,其中i=1,2,3,则( )
A.-b1+b2+b3=0 B.b1-b2+b3=0 C.b1+b2-b3=0 D.b1+b2+b3=0
填空题
9.已知a与b为两个不共线的单位向量,k为实数,若向量a+b与向量ka-b垂直,则k=______.
10.=3e1,=3e2,且=,则=________.
11.在平行四边形ABCD中,E和F分别是边CD和BC的中点.若=λ+μ,其中λ,μ∈R,则λ+μ=____________.
12.若a=(-4,7),b=(-2,-3),则b在a方向上的投影是________.
13.如右图所示,OM∥AB,点P在由射线OM、线段OB及AB的延长线围成的阴影区域内(不含边界)运动,且=x+y,则x的取值范围______;当x=-时,y的取值范围是______.
三、解答题
14.已知三角形ABC,=a,=b,点D、E分别在线段AB和AC上,且AD∶DB=AE∶EC,证明:∥.
15.四边形ABCD中=(6,1),=(x,y),=(-2,-3),(1)若∥,求x与y间的关系式;(2)满足(1)问的同时又有⊥,求x,y的值及四边形ABCD的面积.
16.已知a=(1,1),且a与a+2b的方向相同,求a·b的取值范围.
17.已知O为定点,A,B为动点,开始时满足∠AOB=60°,OA=3,OB=1,后来,A沿方向,B沿方向,都以每秒4个单位长度的速度同时运动.(1)用含有t的式子表示t秒后两动点的距离f(t);(2)几秒后两动点距离最小.
18.已知三个点A(2,1),B(3,2),D(-1,4).(1)求证:AB⊥AD;(2)要使四边形ABCD为矩形,求点C的坐标并求矩形ABCD两条对角线所夹的锐角的余弦值.
高二数学周末练习(12)
参考答案
一、ACCBB ABD
二、1 2e1+e2 - (-∞,0)
三、
14解:
如图,设AD∶DB=AE∶EC=k(k0),则=,=.
∴=-=-=(-)=,又B、C、D、E四点不共线,
∴∥.
15解:(1)++=,
∴=(4+x,y-2),
∵∥,∴x(y-2)-y(4+x)=0即x+2y=0,
∴x与y的关系式为x+2y=0①
(2)+=,∴=(6+x,1+y),
+=,∴=(x-2,y-3),
若⊥,∴·=0,
即x2+y2+4x-2y-15=0②
由①②列方程组,
解得或
或
∴S四边形ABCD=||·||=×4×8=16.
16解:∵a与a+2b方向相同,且
文档评论(0)