(北京大学数学考研真题.docVIP

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
(北京大学数学考研真题

北京大学2005 1设,试求和. 解: 当然此上极限可以 令. 此下极限当然可以 令 (1)设在开区间可微,且在有界。证明在一致连续. 证明: 由存在 . 这显然就是 (2) 设在开区间可微且一致连续,试问在是否一定有界。(若肯定回答,请证明;若否定回答,举例说明) 证明:否定回答. 闭区间上连续函数一致连续.所以 显然此而 3.设. (1)求的麦克劳林展开式。 (2)求。 解: 这道题目要是直接展开是很麻烦的.先对原式做一下变形.有 . 又由于 比较系数有:,接下来,若 中 ,此时令 有。 同理可得:, 。综合得: 4.试作出定义在中的一个函数,使得它在原点处同时满足以下三个条件: (1)的两个偏导数都存在;(2)任何方向极限都存在;(3)原点不连续 解: 。显然这个函数在 的时候,有偏导数存在 ,而对于的时候,有 ,此式在原点也成立。 对于任意方向极限,有。显然沿任意方向趋于原点。 此函数的方向极限都存在。最后,因为沿不同方向趋向原点。不妨设有不同的极限 。且其都不为0。所以该函数在原点不连续。 5.计算.其中是球面与平面的交线。 解:首先,曲线是球面与平面的交线。因为平面过原点,球面中心为原点。 所以它们的交线是该球面上的极大圆。再由坐标的对称性。易知有 。 因此有 ===。 6.设函数列满足下列条件:(1),在连续且有() (2)点点收敛于上的连续函数 证明:在上一致收敛于 证法1:首先,因为对任意。且有,所以,对于任意,有。 又因为在点连续。所以可以找到,当 时。有,以及 同时成立。因此,当, 时,有 。 如此,令,所以有开区间族 覆盖了区间。 而在闭区间上连续。由Heine-Borel 定理,从开区间族中可以选出有限个, 使 。由的选法。可由相应与,当,且时,有。 取,当时,且,有 成立。所以在上一致收敛于。 证毕。 证法2:反证法.设存在某,对于任意,有一,使得.又有界,由Bolzano-Weierstrass定理,所以其必存在      收敛子列收敛于中某值.因为对任意。 且有,所以,当时,有. 设某,由与连续性.存在一,当时      有同时成立.显然,又因为.所以存在值, .      当时, 成立.最后,当时,有      <.这与假设矛盾.      所以在上,是一致收敛于.证毕.

文档评论(0)

84537592 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档