chapter3 linear programming computer solutionand(chapter 3 linear programming computer solutionand).doc

chapter3 linear programming computer solutionand(chapter 3 linear programming computer solutionand).doc

  1. 1、本文档共27页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Chapter 3 Linear Programming: Computer Solution and Sensitivity Analysis Computer Solution Early linear programming used lengthy manual mathematical solution procedure called the Simplex Method (See CD-ROM Module A). Steps of the Simplex Method have been programmed in software packages designed for linear programming problems. Many such packages available currently. Used extensively in business and government. Text focuses on Excel Spreadsheets and QM for Windows. Linear Programming Problem: Standard Form Standard form requires all variables in the constraint equations to appear on the left of the inequality (or equality) and all numeric values to be on the right-hand side. Examples: x3 ( x1 + x2 must be converted to x3 - x1 - x2 ( 0 x1/(x2 + x3) ( 2 becomes x1 ( 2 (x2 + x3) and then x1 - 2x2 - 2x3 ( 0 Sensitivity analysis (or post-optimality analysis) is used to determine how the optimal solution is affected by changes, within specified ranges, in: the objective function coefficients the right-hand side (RHS) values Sensitivity analysis is important to the manager who must operate in a dynamic environment with imprecise estimates of the coefficients. Sensitivity analysis allows him to ask certain what-if questions about the problem. Objective Function Coefficients Let us consider how changes in the objective function coefficients might affect the optimal solution. The range of optimality for each coefficient provides the range of values over which the current solution will remain optimal. Managers should focus on those objective coefficients that have a narrow range of optimality and coefficients near the endpoints of the range. Range of Optimality Graphically, the limits of a range of optimality are found by changing the slope of the objective function line within the limits of the slopes of the binding constraint lines. The slope of an objective function line, Max c1x1 + c2x2, is -c1/c2, and the slope of a constraint, a1x1 + a2x2 = b, is

您可能关注的文档

文档评论(0)

bgl001 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档