chapter1 modelingwith linear functions(chapter 1 modelingwith linear functions).doc

chapter1 modelingwith linear functions(chapter 1 modelingwith linear functions).doc

  1. 1、本文档共21页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
2.1 Using Lines to Model Data Scattergram and Linear Models The graph of plotted data pairs is called a scattergram. A linear model is a straight line or an equation that describes the relationship between two quantities for a true-to-life situation. Year Years since 1960 t Number of Visitors (millions) v 1960 1970 1980 1990 2000 1.2 2.3 2.6 3.8 4.8 Example 1 Let v represent the number of visitors (in millions) to the Grand Canyon in the year that is t years since 1960. a. Fill-in the table of values for t. Identify the dependent and independent variables. b. Make a scattergram of the data. c. Use a ruler to draw (“eyeball”) a line (linear model) that fits the data well. As always, label and scale both axes. d. Use the linear model to estimate the number of visitors in 2010 (extrapolation). e. Use the linear model to estimate in what year there will be 4 million visitors to the Grand Canyon (interpolation). Interpolation, Extrapolation Model Breakdown Interpolation is making prediction within the data given. Extrapolation is making a prediction outside the data given. When a model yields a prediction that does not make sense or an estimate that is not a good approximation, we say that model breakdown has occurred. Model breakdown mostly occurs when trying to make an estimate outside the range given in the data (called extrapolation). Example 2 Year t Number of Prozac Prescriptions (millions) 1989 1991 1993 1995 1996 6.1 10.0 12.2 18.8 20.7 Prozac is an antidepressant that was approved by the FDA in 1987. Let p be the number of prescriptions of Prozac (in millions) dispensed at t years since 1980. a. Fill-in the table of values for t. b. Identify the dependent and independent variables. c. Make a scattergram of the data. d. Use a ruler to draw (“eyeball”) a line (linear model) that fits the data well. As always, label and scale both axes. e. Use the linear model to estimate the number of Prozac prescriptions in 1994.

文档评论(0)

bgl001 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档