c h a p t e r2. l p t h e g r a p h i c a l m e t h o d( lecture1)(c h a p t e r - 2 . l p t h e g r a p h i c a l t h o m e d(lecture1)).doc
- 1、本文档共9页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
c h a p t e r2. l p t h e g r a p h i c a l m e t h o d( lecture1)(c h a p t e r - 2 . l p t h e g r a p h i c a l t h o m e d(lecture1))
LP: THE GRAPHICAL METHOD
Today’s Topic:
A Simple LP Example
Graphical solution of LP
Special Cases
Graphical Sensitivity Analysis
Change of an objective function coefficient
Change of a right-hand-side
Simultaneous changes of several coefficients
1. A Simple LP Example
RMC, Inc. is a firm that produces chemical-based products. Three raw materials are used to produce two products. The material requirements per ton are shown below.
Product Material 1 Material 2 Material 3 Fuel additive 2/5 0 3/5 Solvent base 1/2 1/5 3/10
For the current production period, RMC has available the following quantities of each raw material. Because of spoilage, any materials not used for current production must be discarded.
Material Material 1 Material 2 Material 3 Available 20 5 21
If the contribution to profit is $40 for each ton of fuel additive and $30 for each ton of solvent base, how many tons of each product should be produced in order to maximize the total contribution to profit?
-- LP formulation
Decision variables:
Objective function:
Constraints:
-- Interpretation
feasible vs. infeasible
feasible solution vs. optimal solution
slack vs. surplus
slack = rhs - lhs
≤ constraints surplus = lhs - rhs
≥ constraints 0 all resources used requirement just satisfied + extra resource over performed - not enough resource
(infeasible) not satisfied
(infeasible)
2. Graphical Solution of LP -- for LP with only 2 variables
Step 1. Draw the solution space (describe all feasible solutions)
-- For each constraint
1. draw the equation line
2. decide the direction
Step 2. Draw the objective function line
1. Set obj. fun. Z = convenient value
2. Draw the obj. equation line
3. Determine the direction of improvement for obj. fun. Z
Step 3. Shift the obj. line along the improvement direction and identify an optimal solution.
Step 4. Calculate the optimal solution and the corresponding objective value
-- Observations from graphical solution:
您可能关注的文档
- author guidelinesfor8(guidelinesfor8 author).doc
- automatic generationand integrationof equationsof motion(integrationof equationsof演员generationand automatic).doc
- automatic image registration basedon(automatic谈天说地basedon registration).doc
- awards grant- eastern illinois university(illinois university grant eastern awards - - - - -).doc
- availableandreservenutrientcharacterizationofthe.doc
- b a r c r p a d q a c t- atomic energy regulatory board(b a r c r p a d q a c t atomic energy regulatory board).doc
- b a213– test3 review( ch10,13and14)- p c c(b a213 - test3 review(ch10,13 and14)- p c c).doc
- b i o c h e m i c a l t e s t s a n d t h e i r u s e f o r i d e n t i f i c a t i o n p u r p o s e s(b i o c h e m i c a l t e s t s a n d t h e i r u s e f o r i d e n t i f i c a t i o n p u r p o s e s).doc
- b r a i n s t e m c o n t r o l o f b r e a t h i n g(b r a i n s t e m c o n t r o l o f b r e a t h i n g).doc
- b o c a s y s t e m s, i n c- boca systems- ticket(b o c a s y s t e m s,i n c- boca systems- ticket).doc
文档评论(0)