c h a p t e r2. l p t h e g r a p h i c a l m e t h o d( lecture1)(c h a p t e r - 2 . l p t h e g r a p h i c a l t h o m e d(lecture1)).doc

c h a p t e r2. l p t h e g r a p h i c a l m e t h o d( lecture1)(c h a p t e r - 2 . l p t h e g r a p h i c a l t h o m e d(lecture1)).doc

  1. 1、本文档共9页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
c h a p t e r2. l p t h e g r a p h i c a l m e t h o d( lecture1)(c h a p t e r - 2 . l p t h e g r a p h i c a l t h o m e d(lecture1))

LP: THE GRAPHICAL METHOD Today’s Topic: A Simple LP Example Graphical solution of LP Special Cases Graphical Sensitivity Analysis Change of an objective function coefficient Change of a right-hand-side Simultaneous changes of several coefficients 1. A Simple LP Example RMC, Inc. is a firm that produces chemical-based products. Three raw materials are used to produce two products. The material requirements per ton are shown below. Product Material 1 Material 2 Material 3 Fuel additive 2/5 0 3/5 Solvent base 1/2 1/5 3/10 For the current production period, RMC has available the following quantities of each raw material. Because of spoilage, any materials not used for current production must be discarded. Material Material 1 Material 2 Material 3 Available 20 5 21 If the contribution to profit is $40 for each ton of fuel additive and $30 for each ton of solvent base, how many tons of each product should be produced in order to maximize the total contribution to profit? -- LP formulation Decision variables: Objective function: Constraints: -- Interpretation feasible vs. infeasible feasible solution vs. optimal solution slack vs. surplus slack = rhs - lhs ≤ constraints surplus = lhs - rhs ≥ constraints 0 all resources used requirement just satisfied + extra resource over performed - not enough resource (infeasible) not satisfied (infeasible) 2. Graphical Solution of LP -- for LP with only 2 variables Step 1. Draw the solution space (describe all feasible solutions) -- For each constraint 1. draw the equation line 2. decide the direction Step 2. Draw the objective function line 1. Set obj. fun. Z = convenient value 2. Draw the obj. equation line 3. Determine the direction of improvement for obj. fun. Z Step 3. Shift the obj. line along the improvement direction and identify an optimal solution. Step 4. Calculate the optimal solution and the corresponding objective value -- Observations from graphical solution:

您可能关注的文档

文档评论(0)

bgl001 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档