- 1、本文档共6页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
fourierseries(6页)
4.2 The Method of Frobenius: Solutions about Regular Singular Points
Consider the equation
L[y] = x2y” + xb(x)y’ + c(x)y = 0 (4.2-1)
where b(x) = , c(x) = are analytic at x = 0
Assume a power series solution y = (4.2-2)
Differentiating the series solution (4.2-2) yields
y’ = , y” =
Substitution of the series expressions above into Eq. (4.2-1) gives, in expanded form,
L[y] = [r(r – 1)a0xr + (r + 1)ra1xr+1 + …]
+ [(b0 + b1x + …)( ra0xr + (r + 1)a1xr+1 + …]
+ [(c0 + c1x + …)( a0xr + a1xr+1 + …] (4.2-3)
Collect like powers of x to obtain
L[y] = [r(r – 1) + b0r + c0]a0xr +
(4.2-4)
Set the coefficients of xr? to zero:
r(r – 1) + b0r + c0 = 0 (4.2-5)
Eq. (4.2-5) is called the indicial equation. It has two roots.
Set the coefficients of xm+r? to zero:
= 0 (4.2-6)
Eq. (4.2-6) is called the recurrence relation.
Let r1 and r2 be the roots of the indicial equation. Then we have the following three cases.
Case 1. Distinct roots not differing by an integer.
Case 2. Double roots r1 = r2 = r.
Case 3. Roots differing by an integer
Consider the equation
L[y] = x2y” + xb(x)y’ + c(x)y = 0 (4.2-7)
Any solution y(x) of (4.2-7) satisfies the equation L[y] = 0. Choose am(r) to satisfies the recursion relation but not necessary the indicial relation, y(x,r) satisfies
L[y(x,r)] = a0[r2 + (b0 – 1)r +c0]xr (4.2-8)
Case 2. If the indicial relation has double roots then
L[y(x,r)] = a0(r - r1)2 xr (4.2-9)
If r = r1, then a0(r - r1)2 xr = 0, y(x,r1) is a first independent series solution of L[y] = 0. If we differentiate both sides of (4.2-9) with respect to r and let r = r1
{L[y(x,r)]} = L[y(x,r)] = {a0(r - r1)2 xr}
{a0(r - r1)2 xr} = a0[2(r - r1) xr + (r - r1)2 xr ln x] = 0
Thus y(x,r)at r = r1 is a second independent series solution of (4.2-7) because
L[y(x,r)] = 0.
Case 3. Roots of indicial relation different by an integer (r2 = r1 + j, j = positive integer)
L[y(x,r)] = a0(r - r1)(r - r2) xr (4.2-10)
If r
您可能关注的文档
- findingpublichealthstatisticsanddatasourceswebliography(8页).doc
- finpko.faculty.ku.edu(9页).doc
- firmwareallocationofpcideviceresourcesinwindows(9页).doc
- firstdraft-tom'swebpage(393页).doc
- firstpart(88页).doc
- firstrussiansatelliteoceancolorsensor-ioccg(5页).doc
- fischerdrnbachlandwirtschaft(12页).doc
- f-ldu-100landuseproposalsubmissionform-navcanada(6页).doc
- flipandnotamabbreviations(34页).doc
- floodplan2010-usgsarkansaswatersciencecenter(48页).doc
文档评论(0)