- 1、本文档共10页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
《如何提高高中数学
高中数学学习方法
(一)理论篇
一、高中学生学习中经常出现的问题:????? 1、运算的速度和准确度不够。?????? 2、数式的化简手段不足,化简能力偏低。如立方和、立方差公式,多项式相乘仅一次式相乘,因式分解中的 十字相乘法没有掌握,根式的运算(特别含字母的 )较薄弱,不会分母(分子)有理化。?????? 3、解方程(组)的 能力不足,特别是含有字母系数的方程,一元二次方程根的判别式,根与系数的关系。
? ?4、一些数学方法如配方法、待定系数法、换元法学生应用薄弱。???? 5、几何中的以下定理:平行线等分线段定理,梯形中位线定理,圆中的垂径定理,弦切角、相交弦、切割线定理,正多边形的有关计算,等分圆周等等。
二、 数学学习中应注意的问题:
1.端正态度,充分认识到数学练习的重要性。不论是预习练习,课堂练习,还是课后作业,复习练习,都不能只满足于找到解题方法,而不动手具体练习一练。实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现。
2.要有自信心与意志力。数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯。
3.要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答。解答后,还应进行检查。
4.细观察、活运用、寻规律、成技巧。
三、高中生在学习过程中应做好几点:
五要:1、围绕老师讲述展开联想;2、理清教材文字叙述思路;3、听出教师讲述的重点难点;4、跨越听课的学习障碍,不受干扰;5、在理解基础上扼要笔记。
五先:1、先预习后听课;2、先尝试回忆后看书;3、先看书后做作业;4、先理解后记忆;5、先知识整理后入眠。
五会:1、会制定学习计划;2、会利用时间充分学习;3、会进行学习小结;4、会提出问题讨论学习;5、会阅读参考资料扩展学习。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
(二)试题篇
试卷结构:
一、选择题12个,每个5分,共60分。二、填空题4个,每个5分共20分。三、解答题17(数列、三角函数、解三角形)18(立体几何)、19(概率统计)、20(圆锥曲线)、21(导数)、题每个12分,22(几何证明)、23(极坐标参数方程)、24(不等式)三选一10分,共80分。总分150.
试题分析:
(一)数学选择题的解题方法
1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。
例1、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为 ( )
解析:某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。
故选A。
例2、已知在[0,1]上是的减函数,则a的取值范围是( )
A.(0,1) B.(1,2) C.(0,2) D.[2,+∞)
解析:∵a0,∴y1=2-ax是减函数,∵ 在[0,1]上是减函数。
∴a1,且2-a0,∴1a2,故选B。
2、特例法:就是运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。用特例法解选择题时,特例取得愈简单、愈特殊愈好。
(1)特殊值
例3、一个等差数列的前n项和为48,前2n项和为60,则它的前3n项和为( )
A.-24 B.84 C.72 D.36
解析:结论中不含n,故本题结论的正确性与n取值无关,可对n取特殊值,如n=1,此时a1=48,a2=S2-S1=12a3=a1+2d= -243n项和为36,故选D。
(2)特殊函数
例4、如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( )
A.增函数且最小值为-5 B.减函数且最小值是-5
C.增函数且最大值为-5 D.减函数且最大值是-5
解析:构造特殊函数f(x)=x,虽然满足题设条件,并易知f(x)在区间[-7,-3]上是增函数,且最大值为f(-3)=-5,故选C。
(3)特殊数列
例5、已知等差数列满足,则有 ( )
A、 B、 C、 D、
解析:取满足题意的特殊数列,则,故选C。
(4)特殊位置
例6、过的焦点作直线交抛物线与两点,若与的长分别是,则
文档评论(0)