- 1、本文档共81页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《人教版高中数学必修四教案三角函数部分
1.1.1 任意角
教学目标
知识与技能目标
理解任意角的概念(包括正角、负角、零角) 与区间角的概念.
过程与能力目标
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.
情感与态度目标
提高学生的推理能力; 2.培养学生应用意识.
教学重点
任意角概念的理解;区间角的集合的书写.
教学难点
终边相同角的集合的表示;区间角的集合的书写.
教学过程
一、引入:
1.回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角.
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
二、新课:
1.角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称:
③角的分类:
④注意:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;
⑵零角的终边与始边重合,如果α是零角α =0°;
⑶角的概念经过推广后,已包括正角、负角和零角.
⑤练习:请说出角α、β、γ各是多少度?2.象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.
例1.如图⑴⑵中的角分别属于第几象限角?
例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.
⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;
答:分别为1、2、3、4、1、2象限角.
3.探究:教材P3面
终边相同的角的表示:
所有与角α终边相同的角,连同α在内,可构成一个集合S={ β | β = α + k·360 ° ,
k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和.
注意:
⑴ k∈Z
⑵ α是任一角;
⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差
360°的整数倍;
⑷ 角α + k·720 °与角α终边相同,但不能表示与角α终边相同的所有角.
例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.
⑴-120°;⑵640 °;⑶-950°12'.
答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角;
例4.写出终边在y轴上的角的集合(用0°到360°的角表示) .
解:{α | α = 90°+ n·180°,n∈Z}.
例5.写出终边在上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.
4.课堂小结
①角的定义;
②角的分类:
③象限角;
④终边相同的角的表示法.
5.课后作业:
①阅读教材P2-P5; ②教材P5练习第1-5题; ③教材P.9习题1.1第1、2、3题
思考题:已知α角是第三象限角,则2α,各是第几象限角?
解:角属于第三象限,
k·360°+180°<α<k·360°+270°(k∈Z)
因此,2k·360°+360°<2α<2k·360°+540°(k∈Z)
即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)
故2α是第一、二象限或终边在y轴的非负半轴上的角.
又k·180°+90°<<k·180°+135°(k∈Z) .
当k为偶数时,令k=2n(n∈Z),则n·360°+90°<<n·360°+135°(n∈Z) ,
此时,属于第二象限角
当k为奇数时,令k=2n+1 (n∈Z),则n·360°+270°<<n·360°+315°(n∈Z) ,
此时,属于第四象限角
因此属于第二或第四象限角.
1.1.2弧度制(一)
教学目标
知识与技能目标
理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.
过程与能力目标
能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题
情感与态度目标
通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美.
教学重点
弧度的概念.弧长公式及扇形的面积公式的推导与证明.
教学难点
“角度制”与“弧度制”的区别与联系.
教学过程
一、复习角度制:
初中所学的角度制是怎样规定角的度量的?
规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.
二、新课:
1.引 入:
由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何
您可能关注的文档
- 《仓储与存货管理复习.doc
- 《人教版新版高一化学同步教学和练习全套1.doc
- 《仓储与配送管理作业四.doc
- 《人教版新目标七年级上册unit9单元设计.doc
- 《人教版新目标初中九年级物理教案第十一~十四章很经典1.doc
- 《仓储实训.doc
- 《人教版新目标英语八年级上册课文翻译.doc
- 《仓储管理作业.docx
- 《人教版新目标英语八年级下册重点短语及句型.doc
- 《仓储管理的优化案例.doc
- 第18讲 第17课 西晋的短暂统一和北方各族的内迁.docx
- 第15讲 第14课 沟通中外文明的“丝绸之路”.docx
- 第13课时 中东 欧洲西部.doc
- 第17讲 第16 课三国鼎立.docx
- 第17讲 第16课 三国鼎立 带解析.docx
- 2024_2025年新教材高中历史课时检测9近代西方的法律与教化含解析新人教版选择性必修1.doc
- 2024_2025学年高二数学下学期期末备考试卷文含解析.docx
- 山西版2024高考政治一轮复习第二单元生产劳动与经营第5课时企业与劳动者教案.docx
- 第16讲 第15课 两汉的科技和文化 带解析.docx
- 第13课 宋元时期的科技与中外交通.docx
最近下载
- 单向板肋梁楼盖计算.docx
- 作业4:工学一体化课程《小型网络安装与调试》工学一体化课程考核方案.docx VIP
- 中国画之写意画.ppt VIP
- (2019苏教)小学科学三年级上册:全册整套教案资料.pdf
- 核心素养导向的高中数学课例设计研究与实践(样例)(1).doc
- 驾驶证延期委托书模板.doc
- 作业5:工学一体化课程《小型网络安装与调试》工学一体化课程终结性考核试题.docx VIP
- 作业5:工学一体化课程《小型网络安装与调试》工学一体化课程终结性考核试题.pdf VIP
- 中国画的构图形式ppt课件.pptx
- 作业11:《小型网络安装与调试》工学一体化课程教学进度计划表.pdf VIP
文档评论(0)