- 1、本文档共7页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
ANSYS单元类型详解.
ANSYS单元类型(详解)
Mass21是由6个自由度的点元素,x,y,z三个方向的线位移以及绕x,y,z轴的旋转位移。每个自由度的质量和惯性矩分别定义。Link1可用于各种工程应用中。根据应用的不用,可以把此元素看成桁架,连杆,弹簧,等。这个2维杆元素是一个单轴拉压元素,在每个节点都有两个自由度。X,y,方向。铰接,没有弯矩。Link8可用于不同工程中的杆。可用作模拟构架,下垂电缆,连杆,弹簧等。3维杆元素是单轴拉压元素。每个点有3个自由度。X,y,z方向。作为铰接结构,没有弯矩。具有塑性,徐变,膨胀,应力强化和大变形的特性。Link10 3维杆元素,具有双线性劲度矩阵的特性,单向轴拉(或压)元素。对于单向轴拉,如果元素变成受压,则硬度就消失了。此特性可用于静力钢缆中,当整个钢缆模拟成一个元素时。当需要静力元素能力但静力元素又不是初始输入时,也可用于动力分析中。该元素是shell41的线形式,keyopt(1)=2,’cloth’选项。如果分析的目的是为了研究元素的运动,(没有静定元素),可用与其相似但不能松弛的元素(如link8和pipe59)代替。当最终的结构是一个拉紧的结构的时候,Link10也不能用作静定集中分析中。但是由于最终局于一点的结果松弛条件也是有可能的。在这种情况下,要用其他的元素或在link10中使用‘显示动力’技术。Link10每个节点有3个自由度,x,y,z方向。在拉(或压)中都没有抗弯能力,但是可以通过在每个link10元素上叠加一个小面积的量元素来实现。具有应力强化和大变形能力。Link11用于模拟水压圆筒以及其他经受大旋转的结构。此元素为单轴拉压元素,每个节点有3个自由度。X,y,z方向。没有弯扭荷载。Link180可用于不同的工程中。可用来模拟构架,连杆,弹簧,等。此3维杆元素是单轴拉压元素,每个节点有3个自由度。X,y,z方向。作为胶接结构,不考虑弯矩。具有塑性,徐变,旋转,大变形,大应变能力。link180在任何分析中都包括应力强化项(分析中,nlgeon,on),此为缺省值。支持弹性,各向同性硬化塑性,运动上的硬化塑性,希尔各向异性塑性,chaboche非线性硬化塑性和徐变等。Beam3单轴元素,具有拉,压,弯性能。在每个节点有3个自由度。X,y,方向以及绕z轴的旋转。Beam4是具有拉压扭弯能力的单轴元素。每个节点有6个自由度,x,y,z,绕x,y,z轴。具有应力强化和大变形能力。在大变形分析中,提供了协调相切劲度矩阵选项。Beam23单轴元素,拉压和受弯能力。每个节点有3个自由度。该元素具有塑性,徐变,膨胀能力。如果这些影响都不需要,可使用beam3,2维弹性梁。Beam24 3维薄壁梁。单轴元素,任意截面都有拉压、弯曲和St. Venant扭转能力。可用于任何敞开的和单元截面。该元素每个节点有6个自由度:x,y,z和绕x,y,z方向。该元素在轴向和自定义的截面方向都具有塑性,徐变和膨胀能力。若不需要这些能力,可用弹性梁beam4或beam44。Pipe20和beam23也具有塑性,徐变和膨胀能力。截面是通过一系列的矩形段来定义的。梁的纵轴向方向由第三个节点指明。Beam44 3维弹性锥形不对称梁。单轴元素,具有拉压扭和弯曲能力。该元素每个节点有6个自由度:x,y,z和绕x,y,z方向。该元素允许每个端点具有不均匀几何特性,并且允许端点与梁的中性轴偏移。若不需要这些特性,可采用beam4。该元素的2维形式是beam54。该元素也提供剪应变选项。还提供了输出作用于单元上的与单元同方向的力的选项。具有应力强化和大变形能力。Beam54单轴元素,拉压和受弯能力.每个节点有3个自由度。该元素允许在端点有不均匀几何性质。允许端点偏移梁的轴心。无塑性徐变或膨胀能力。有应力强化能力。剪切变形和弹性基础影响也体现在选项中。还可打印作用于元素上的沿元素方向的力。Beam188 3维线性有限应力梁。适用于分析短粗梁结构。该元素基于timoshenko梁理论。包括剪应变。Beam188是一个三维线性(2节点)梁。每个节点有6或7个自由度,具体依赖于keyopt(1)的值。Keyopt(1)=0为每个节点6个自由度。包括x,y,z方向和绕x,y,z方向。=1还考虑了扭转自由度。该元素适用于线性,大旋转和大应变非线性。包括应力强化项在任何分析中,都缺省为nlgeom=on.。该选项为元素提供了分析曲屈、侧移和扭转的能力。Beam189 3维二次有限应力梁。适用于分析短粗梁结构。该元素基于timoshenko梁理论。包括剪应变。Beam189是一个三维二次(3节点)梁。每个节点有6或7个自由度,具体依赖于keyopt(1)的值。Keyopt(1)=0为每个节
文档评论(0)