- 1、本文档共8页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《二次函数》单元复习资料《二次函数》单元复习资料
《二次函数》单元复习资料
二次函数是初等函数中的重要函数,在解决各类数学问题和实际问题中有着广泛的应用,是近几年中考热点之一。学习二次函数,对于学生数形结合、函数方程等重要数学思想方法的培养,对拓宽学生解题思路、发展智力、培养能力具有十分重要意义。
二次函数主要考查表达式、顶点坐标、开囗方向、对称轴、最大(小)值、用二次函数模型解决生活实际问题。其中顶点坐标、开囗方向、对称轴、最大(小)值、图象与坐标轴的交点等主要以填空题、选择题出现。利用二次函数解决生活实际问题以及二次函数与几何知识结合的综合题以解答题形式出现:一类是二次图象及性质的纯数学问题;一类是利用二次函数性质结合其它知识解决实际问题的题目。
考点1:二次函数的有关概念
一般的,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数叫做二次函数。
例 m取哪些值时,函数是以x为自变量的二次函数?
(1)抛物线的形状
二次函数y=ax2+bx+c(a≠0)的图像是一条抛物线,当a0时,抛物线开口向上;当a0时,抛物线开口向下。
(2)抛物线的平移
二次函数y=ax2向右平移h个单位,向上平移k个单位后得到新的二次函数y=a(x-h) 2+k,进一步化简计算得到二次函数y=ax2+bx+c。新函数与原来函数形状相同,只是位置不同。
(3)抛物线与坐标轴的交点
抛物线与x轴相交时y=0,抛物线与y轴相交时x=0。
(4)抛物线y=ax2+bx+C中a、b、c的作用
a决定当开囗方向,a0时,抛物线开口向上;当a0时,抛物线开口向下。
a和b共同决定对称轴。
C决定与y轴交点。
(5)抛物线顶点坐标、对称轴、最大(小)值
顶点式:y=a(x-h) 2+k顶点坐标(h,k),对称轴x=h, 最大(小)值k。
?一般式:y=ax2+bx+c顶点坐标,对称轴,最大(小)值为。
考点2:二次函数与一元二次方程、一元二次不等式的联系
?例1.如图,以 40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线。如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t-5t2。
考虑以下问题
(1)球的飞行高度能否达到 15m?如能,需要多少飞行时间?
(2)球的飞行高度能否达到 20m?如能,需要多少飞行时间?
(3)球的飞行高度能否达到 20.5m?为什么?
(4)球从飞出到落地要用多少时间?
?
例2.某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高为0.8m.水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示.
??
?根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+.
(1)喷出的水流距水平面的最大高度是多少?
(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内?
?考点3:求二次函数的解析式
?例1.如图13,已知二次函数的图像经过点A和点B.
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标;
(3)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q 到x轴的距离.
考点4:二次函数的图象、性质在生活中的应用
例1.利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.?5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).
(1)当每吨售价是240元时,计算此时的月销售量;
(2)求出y与x的函数关系式(不要求写出x的取值范围);
(3)该经销店要获得最大月利润,售价应定为每吨多少元?
(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.
?例2.研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为(吨)时,所需的全部费用(万元)与满足关系式,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)
(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;
(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;
(3)受资金、生产能
您可能关注的文档
- “同学关系”作文“同学关系”作文.ppt
- “如何增强小学生习作兴趣研究”结题报告“如何增强小学生习作兴趣研究”结题报告.doc
- “安全教育”读后感、观后感(一)“安全教育”读后感、观后感(一).doc
- “安全文明校园”评估指标体系“安全文明校园”评估指标体系.doc
- “大数据时代下的云计算”2013企商云计算研讨会“大数据时代下的云计算”2013企商云计算研讨会.doc
- “小”黑板变成“大”舞台“小”黑板变成“大”舞台.doc
- “心灵的屋檐”话题作文指导和范文PPT课件(19张)“心灵的屋檐”话题作文指导和范文PPT课件(19张).ppt
- “思政课”社会实践报告机械工程学院“思政课”社会实践报告机械工程学院.doc
- ××县第一中学五届四次教职工代表大会的总结××县第一中学五届四次教职工代表大会的总结.doc
- “成功与条件”为话题作文“成功与条件”为话题作文.ppt
文档评论(0)