选修2-1_总结选修2-1_总结.doc

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
选修2-1_总结选修2-1_总结

高二数学 选修2-1 第一章 常用逻辑用语 1. 四种命题及相互关系: 2.充分条件、必要条件、充要条件 若,则是的充分条件,是的必要条件. 若,则是的充要条件(充分必要条件). 3.逻辑联结词 原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有n个 至多有(n-1)个 小于 大于或等于 至多有n个 至少有(n+1)个 对所有x,成立 存在某x,不成立 p或q p且q 对任何x,不成立 存在某x,成立 p且q p或q 4.全称命题: x∈M,p(x) 全称命题否定: x0∈M,p(x0) 特称命题: x0∈M,p(x0) 特称命题否定: x∈M,p(x) 全称命题的否定是特称命题, 特称命题的否定是全称命题. 第二章 圆锥曲线与方程 椭圆的几何性质: 焦点的位置 焦点在轴上 焦点在轴上 图形 标准方程 范围 且 且 顶点 、 、 、 、 轴长 短轴的长 长轴的长 焦点 、 、 焦距 对称性 关于轴、轴、原点对称 离心率 定义式 15、双曲线的几何性质: 焦点的位置 焦点在轴上 焦点在轴上 图形 标准方程 范围 或, 或, 顶点 、 、 轴长 虚轴的长 实轴的长 焦点 、 、 焦距 对称性 关于轴、轴对称,关于原点中心对称 离心率 定义式 渐近线方程 实轴和虚轴等长的双曲线称为等轴双曲线. 19、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即. 20、焦半径公式: 若点在抛物线上,焦点为,则; 21、抛物线的几何性质: 标准方程 图形 定义式 对称轴 轴 轴 焦点 准线方程 离心率 范围 第三章 空间向量与立体几何 22、空间向量的概念: 在空间,具有大小和方向的量称为空间向量. 向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向. 向量的大小称为向量的模(或长度),记作. 模(或长度)为的向量称为零向量;模为的向量称为单位向量. 与向量长度相等且方向相反的向量称为的相反向量,记作. 方向相同且模相等的向量称为相等向量. 23、空间向量的加法和减法: 求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点为起点的两个已知向量、为邻边作平行四边形,则以起点的对角线就是与的和,这种求向量和的方法,称为向量加法的平行四边形法则. 求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点,作,,则. 24、实数与空间向量的乘积是一个向量,称为向量的数乘运算.当时,与方向相同;当时,与方向相反;当时,为零向量,记为.的长度是的长度的倍. 25、设,为实数,,是空间任意两个向量,则数乘运算满足分配律及结合律. 分配律:;结合律:. 26、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线. 27、向量共线的充要条件:对于空间任意两个向量,,的充要条件是存在实数,使. 28、平行于同一个平面的向量称为共面向量. 29、向量共面定理:空间一点位于平面内的充要条件是存在有序实数对,,使;或对空间任一定点,有;或若四点,,,共面,则. 30、已知两个非零向量和,在空间任取一点,作,,则称为向量,的夹角,记作.两个向量夹角的取值范围是:. 31、对于两个非零向量和,若,则向量,互相垂直,记作. 32、已知两个非零向量和,则称为,的数量积,记作.即.零向量与任何向量的数量积为. 33、等于的长度与在的方向上的投影的乘积. 34、若,为非零向量,为单位向量,则有; ;,,; ;. 35、向量数乘积的运算律:;; . 36、若,,是空间三个两两垂直的向量,则对空间任一向量,存在有序实数组,使得,称,,为向量在,,上的分量. 37、空间向量基本定理:若三个向量,,不共面,则对空间任一向量,存在实数组,使得. 38、若三个向量,,不共面,则所有空间向量组成的集合是 .这个集合可看作是由向量,,生成的, 称为空间的一个基底,,,称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底. 39、设,,为有公共起点的三个两两垂直的单位向量(称它们为单位正交基底),以,,的公共起点为原点,分别以,,的方向为轴,轴,轴的正方向建立空间直角坐标系.则对于空间任意一个向量,一定可以把它平移,使它的起点与原点重合,得到向量.存在有序实数

文档评论(0)

cduutang + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档