分式方程和无理方程解法精选题.doc

  1. 1、本文档共3页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第七讲 分式方程和无理方程的解法 初中大家已经学习了可化为一元一次方程的分式方程的解法.本讲将要学习可化为一元二次方程的分式方程的解法以及无理方程的解法.并且只要求掌握(1)不超过三个分式构成的分式方程的解法,会用”去分母”或”换元法”求方程的根,并会验根;(2)了解无理方程概念,掌握可化为一元二次方程的无理方程的解法,会用”平方”或”换元法”求根,并会验根. 一、可化为一元二次方程的分式方程 1.去分母化分式方程为一元二次方程 【例1】解方程 . 说明: (1) 去分母解分式方程的步骤: ①把各分式的分母因式分解; ②在方程两边同乘以各分式的最简公分母; ③去括号,把所有项都移到左边,合并同类项; ④解一元二次方程; ⑤验根. (2) 验根的基本方法是代入原方程进行检验,但代入原方程计算量较大.而分式方程可能产生的增根,就是使分式方程的分母为0的根.因此我们只要检验一元二次方程的根,是否使分式方程两边同乘的各分式的最简公分母为0.若为0,即为增根;若不为0,即为原方程的解. 2.用换元法化分式方程为一元二次方程 【例2】解方程 . 说明:用换元法解分式方程常见的错误是只求出的值,而没有求到原方程的解,即的值. 【例3】解方程 . 说明:解决分式方程的方法就是采取去分母、换元等法,将分式方程转化为整式方程,体现了化归思想. 二、可化为一元二次方程的无理方程 根号下含有未知数的方程,叫做无理方程. 1.平方法解无理方程 【例4】解方程 ①移项,使方程的左边只保留含未知数的二次根式,其余各项均移到方程的右边;②两边同时平方,得到一个整式方程;③解整式方程;④验根. 【例5】解方程 说明:含未知数的二次根式恰有两个的无理方程的一般步骤: ①移项,使方程的左边只保留一个含未知数的二次根式;②两边平方,得到含未知数的二次根式恰有一个的无理方程;③一下步骤同例4的说明. 2.换元法解无理方程 【例6】解方程 说明:解决根式方程的方法就是采取平方、换元等法,将根式方程转化为有理方程,体现了化归思想. A 1.解下列方程: (1) (2) (3) (4) 2.用换元法解方程: 3.解下列方程: (1) (2) (3) 4.解下列方程: (1) (2) 5.用换元法解下列方程: (1) (2) B 组 1.解下列方程: (1) (2) (3) (4) 2.用换元法解下列方程: (1) (2) (3) 3.若是方程的解,试求的值. 4.解下列方程: (1) (2) 5.解下列方程: (1) (2) (3) 1

文档评论(0)

peain + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档